{"title":"Friedreich ataxia: what can we learn from non-GAA repeat mutations?","authors":"David R Lynch, M Shen, Robert B Wilson","doi":"10.1080/17582024.2025.2452147","DOIUrl":null,"url":null,"abstract":"<p><p>Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the <i>FXN</i> gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the <i>FXN</i> gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient. In this review, we propose explanations for such phenotypes based on the potential for activities of frataxin other than enhancement of iron-sulfur cluster synthesis, as well as crucial future experiments for fully understanding the role of frataxin in cells.</p>","PeriodicalId":19114,"journal":{"name":"Neurodegenerative disease management","volume":" ","pages":"1-10"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurodegenerative disease management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17582024.2025.2452147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the FXN gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the FXN gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient. In this review, we propose explanations for such phenotypes based on the potential for activities of frataxin other than enhancement of iron-sulfur cluster synthesis, as well as crucial future experiments for fully understanding the role of frataxin in cells.