{"title":"Malaria survey data and geospatial suitability mapping for understanding spatial and temporal variations of risk across Kenya","authors":"Caroline Kioko, Justine Blanford","doi":"10.1016/j.parepi.2024.e00399","DOIUrl":null,"url":null,"abstract":"<div><div>Malaria remains a public health concern in Kenya where children and pregnant women are vulnerable groups. The common interventions in place to fight malaria include using insecticide-treated bed nets (ITNs), knowledge and awareness about malaria, and intake of malaria anti-malaria drugs. Despite the availability of these interventions, Kenya still records more than 10,000 clinical cases annually. In this study, we examined how malaria and interventions varied across Kenya for 2015 and 2020. We analyzed the Kenya Malaria Indicator Survey (<em>N</em> = 10,072) for 2015 and, (<em>N</em> = 11,549) for 2020, and climate data with Fuzzy overlay method to examine how malaria and its interventions relate to environmental conditions required for malaria. The study found that 79 % of malaria cases were distributed in lake endemic, 11 % in coastal endemic, 7 % in highland epidemic, and 3 % in seasonal zone. Use of Insecticide-treated bed nets (ITNs) was 77 % in lake endemic, 13 % in coastal endemic, 9 % in highland epidemic, and 1 % in seasonal zone. Knowledge about malaria was 82 % in lake endemic, 9 % in highland epidemic, 6 % in coastal endemic, and 3 % in seasonal zone. Additionally, based on climate data, lake endemic zone was 94 % suitable for malaria transmission compared to other zones. Despite the use of ITNs and awareness about malaria, malaria transmission continues to be a threat especially in counties in the lake endemic zone. Furthermore, place of residence, climate factors, ownership of ITNs may be associated with malaria in the region.</div></div>","PeriodicalId":37873,"journal":{"name":"Parasite Epidemiology and Control","volume":"28 ","pages":"Article e00399"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasite Epidemiology and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405673124000631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0
Abstract
Malaria remains a public health concern in Kenya where children and pregnant women are vulnerable groups. The common interventions in place to fight malaria include using insecticide-treated bed nets (ITNs), knowledge and awareness about malaria, and intake of malaria anti-malaria drugs. Despite the availability of these interventions, Kenya still records more than 10,000 clinical cases annually. In this study, we examined how malaria and interventions varied across Kenya for 2015 and 2020. We analyzed the Kenya Malaria Indicator Survey (N = 10,072) for 2015 and, (N = 11,549) for 2020, and climate data with Fuzzy overlay method to examine how malaria and its interventions relate to environmental conditions required for malaria. The study found that 79 % of malaria cases were distributed in lake endemic, 11 % in coastal endemic, 7 % in highland epidemic, and 3 % in seasonal zone. Use of Insecticide-treated bed nets (ITNs) was 77 % in lake endemic, 13 % in coastal endemic, 9 % in highland epidemic, and 1 % in seasonal zone. Knowledge about malaria was 82 % in lake endemic, 9 % in highland epidemic, 6 % in coastal endemic, and 3 % in seasonal zone. Additionally, based on climate data, lake endemic zone was 94 % suitable for malaria transmission compared to other zones. Despite the use of ITNs and awareness about malaria, malaria transmission continues to be a threat especially in counties in the lake endemic zone. Furthermore, place of residence, climate factors, ownership of ITNs may be associated with malaria in the region.
期刊介绍:
Parasite Epidemiology and Control is an Open Access journal. There is an increasing amount of research in the parasitology area that analyses the patterns, causes, and effects of health and disease conditions in defined populations. This epidemiology of parasite infectious diseases is predominantly studied in human populations but also spans other major hosts of parasitic infections and as such this journal will have a broad remit. We will focus on the major areas of epidemiological study including disease etiology, disease surveillance, drug resistance and geographical spread and screening, biomonitoring, and comparisons of treatment effects in clinical trials for both human and other animals. We will also look at the epidemiology and control of vector insects. The journal will also cover the use of geographic information systems (Epi-GIS) for epidemiological surveillance which is a rapidly growing area of research in infectious diseases. Molecular epidemiological approaches are also particularly encouraged.