{"title":"Apelin-13 inhibits ischemia–reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy","authors":"Xiang Zheng, Dongshan Chen, Jiyue Wu, Zihao Gao, Mingcong Huang, Chunmeng Fan, Jing Chang, Yu Liu, Xiangjun Zeng, Wei Wang","doi":"10.1096/fj.202402850R","DOIUrl":null,"url":null,"abstract":"<p>Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia–reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes. Therefore, it is hypothesized that apelin-13 may protect podocytes from IRI by inhibiting podocyte apoptosis through regulation of podocyte autophagy. Our study demonstrates for that podocytes are also involved in renal ischemia–reperfusion (I/R) injury and shows in detail the morphological and functional changes in podocytes during renal I/R. Because podocytes are terminally differentiated cells whose homeostasis require high levels of autophagy, we investigate the cellular mechanisms underlying the effects of apelin-13 on I/R-mediated podocyte injury in terms of autophagy. In addition, our study demonstrates that apelin-13 ameliorates renal I/R injury in podocyte injury, by increasing podocyte autophagy through inhibition of m-TOR phosphorylation, which in turn inhibits apoptosis.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402850R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia–reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes. Therefore, it is hypothesized that apelin-13 may protect podocytes from IRI by inhibiting podocyte apoptosis through regulation of podocyte autophagy. Our study demonstrates for that podocytes are also involved in renal ischemia–reperfusion (I/R) injury and shows in detail the morphological and functional changes in podocytes during renal I/R. Because podocytes are terminally differentiated cells whose homeostasis require high levels of autophagy, we investigate the cellular mechanisms underlying the effects of apelin-13 on I/R-mediated podocyte injury in terms of autophagy. In addition, our study demonstrates that apelin-13 ameliorates renal I/R injury in podocyte injury, by increasing podocyte autophagy through inhibition of m-TOR phosphorylation, which in turn inhibits apoptosis.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.