Lack of intracranial atherosclerosis in various atherosclerotic mouse models.

Diewertje Ilse Bink, Katja Ritz, Claire Mackaaij, Olga Stam, Sanny Scheffer, Mark R Mizee, Hanneke J Ploegmakers, Bert J van Het Hof, Onno J de Boer, Judith Sluimer, Guido Ry De Meyer, Louise van der Weerd, Helga E de Vries, Mat Jap Daemen
{"title":"Lack of intracranial atherosclerosis in various atherosclerotic mouse models.","authors":"Diewertje Ilse Bink, Katja Ritz, Claire Mackaaij, Olga Stam, Sanny Scheffer, Mark R Mizee, Hanneke J Ploegmakers, Bert J van Het Hof, Onno J de Boer, Judith Sluimer, Guido Ry De Meyer, Louise van der Weerd, Helga E de Vries, Mat Jap Daemen","doi":"10.1530/VB-23-0013","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.</p><p><strong>Methods and results: </strong>We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels. The presence of atherosclerotic plaques was systematically examined from the distal common carotids to the circle of Willis in three atherogenic mouse models. Extra- and intracranial vessel characteristics were studied by immunohistochemistry. All three strains developed atherosclerotic lesions in the common carotids, while no lesions were found intracranially. This coincided with altered vessel morphology. Compared to extracranial sections, intracranially the number of elastic layers decreased, tight junction markers increased and antioxidant enzyme heme oxygenase (HO)-1 increased. Higher HO-1 expression was also shown in human intracranial arteries. Human brain endothelial cell stimulation with oxLDL induced endogenous protective antioxidant HO-1 levels through Nrf2 translocation.</p><p><strong>Conclusion: </strong>Intracranial atherosclerosis was absent in three atherogenic mouse models. Intracranial vessel segments showed increased presence of junction markers in mice and increased HO-1 in both mice and human tissue. We suggest that differences in brain vessel structure and induced antioxidant levels in the brain endothelium found in mouse and human tissue may contribute to decreased atherosclerosis susceptibility of intracranial arteries.</p>","PeriodicalId":75294,"journal":{"name":"Vascular biology (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular biology (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1530/VB-23-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.

Methods and results: We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels. The presence of atherosclerotic plaques was systematically examined from the distal common carotids to the circle of Willis in three atherogenic mouse models. Extra- and intracranial vessel characteristics were studied by immunohistochemistry. All three strains developed atherosclerotic lesions in the common carotids, while no lesions were found intracranially. This coincided with altered vessel morphology. Compared to extracranial sections, intracranially the number of elastic layers decreased, tight junction markers increased and antioxidant enzyme heme oxygenase (HO)-1 increased. Higher HO-1 expression was also shown in human intracranial arteries. Human brain endothelial cell stimulation with oxLDL induced endogenous protective antioxidant HO-1 levels through Nrf2 translocation.

Conclusion: Intracranial atherosclerosis was absent in three atherogenic mouse models. Intracranial vessel segments showed increased presence of junction markers in mice and increased HO-1 in both mice and human tissue. We suggest that differences in brain vessel structure and induced antioxidant levels in the brain endothelium found in mouse and human tissue may contribute to decreased atherosclerosis susceptibility of intracranial arteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Lack of intracranial atherosclerosis in various atherosclerotic mouse models. Protection of liver sinusoidal endothelial cells using different preservation solutions. Therapeutic angiogenesis for patients with chronic limb-threatening ischemia: promising or hoax? Whole-body insulin resistance leads to accelerated atherosclerosis: role for Nox2 NADPH oxidase. Ang II-induced contraction is impaired in the aortas of renovascular hypertensive animal model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1