Xingyue Jin, Akane G Mizukami, Satohiro Okuda, Tetsuya Higashiyama
{"title":"Investigating Vesicle-Mediated Regulation of Pollen Tube Growth through BFA Inhibition and AS-ODN Targeting of TfRABA4D in Torenia fournieri","authors":"Xingyue Jin, Akane G Mizukami, Satohiro Okuda, Tetsuya Higashiyama","doi":"10.1093/hr/uhaf018","DOIUrl":null,"url":null,"abstract":"In flowering plants, pollen tube growth is essential for delivering immotile sperm cells during double fertilization, directly influencing seed yield. This process relies on vesicle-mediated trafficking to drive tip growth and maintain fertility. However, investigating pollen tube growth is challenging in non-model plants due to the lack of transgenic tools. Here, we established a method to transiently inhibit vesicle activity in pollen tubes of the wishbone flower (Torenia fournieri), a classic plant for sexual reproduction studies, using brefeldin A (BFA) and antisense oligodeoxynucleotides (AS-ODNs) targeting key genes. BFA broadly disrupted vesicle gradient homeostasis in T. fournieri pollen tubes, leading to widespread changes in cell wall deposition, ROS distribution, and pollen tube morphology. To assess the role of specific genes, we designed AS-ODNs against TfANX, the sole ANXUR homolog in T. fournieri, which successfully penetrated cell membranes and suppressed TfANX expression. This inhibition impaired pollen tube tip growth, causing pollen tube leakage at the shank region and, in some cases, multiple leakages. Similarly, AS-ODN targeting TfRABA4D, a pollen-specific vesicle regulator, induced a bulging phenotype and disrupted pectin deposition and reduced ROS distribution, mirroring BFA effects. These findings elucidate vesicle-mediated regulation in pollen tube tip growth and introduce an accessible method for genetic manipulation in reproductive research of non-model plants.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"68 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf018","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In flowering plants, pollen tube growth is essential for delivering immotile sperm cells during double fertilization, directly influencing seed yield. This process relies on vesicle-mediated trafficking to drive tip growth and maintain fertility. However, investigating pollen tube growth is challenging in non-model plants due to the lack of transgenic tools. Here, we established a method to transiently inhibit vesicle activity in pollen tubes of the wishbone flower (Torenia fournieri), a classic plant for sexual reproduction studies, using brefeldin A (BFA) and antisense oligodeoxynucleotides (AS-ODNs) targeting key genes. BFA broadly disrupted vesicle gradient homeostasis in T. fournieri pollen tubes, leading to widespread changes in cell wall deposition, ROS distribution, and pollen tube morphology. To assess the role of specific genes, we designed AS-ODNs against TfANX, the sole ANXUR homolog in T. fournieri, which successfully penetrated cell membranes and suppressed TfANX expression. This inhibition impaired pollen tube tip growth, causing pollen tube leakage at the shank region and, in some cases, multiple leakages. Similarly, AS-ODN targeting TfRABA4D, a pollen-specific vesicle regulator, induced a bulging phenotype and disrupted pectin deposition and reduced ROS distribution, mirroring BFA effects. These findings elucidate vesicle-mediated regulation in pollen tube tip growth and introduce an accessible method for genetic manipulation in reproductive research of non-model plants.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.