PhWRKY30 activates salicylic acid biosynthesis to positively regulate antiviral defense response in petunia

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences Horticulture Research Pub Date : 2025-01-15 DOI:10.1093/hr/uhaf013
Meiling Wang, Yanping Yuan, Yike Zhao, Zhuo Hu, Shasha Zhang, Jianrang Luo, Cai-Zhong Jiang, Yanlong Zhang, Daoyang Sun
{"title":"PhWRKY30 activates salicylic acid biosynthesis to positively regulate antiviral defense response in petunia","authors":"Meiling Wang, Yanping Yuan, Yike Zhao, Zhuo Hu, Shasha Zhang, Jianrang Luo, Cai-Zhong Jiang, Yanlong Zhang, Daoyang Sun","doi":"10.1093/hr/uhaf013","DOIUrl":null,"url":null,"abstract":"Petunia (Petunia hybrida) plants are highly threatened by a diversity of viruses, causing substantial damage to ornamental quality and seed yield. However, the regulatory mechanism of virus resistance in petunia is largely unknown. Here, we revealed that a member of petunia WRKY transcription factors, PhWRKY30, was dramatically up-regulated following Tobacco rattle virus (TRV) infection. Down-regulation of PhWRKY30 through TRV-based virus-induced gene silencing increased green fluorescent protein (GFP)-marked TRV RNA accumulation and exacerbated the symptomatic severity. In comparison to wild-type (WT) plants, PhWRKY30-RNAi transgenic petunia plants exhibited a compromised resistance to TRV infection, whereas an enhanced resistance was observed in PhWRKY30-overexpressing (OE) transgenic plants. PhWRKY30 affected salicylic acid (SA) production and expression of arogenate dehydratase 1 (PhADT1), phenylalanine ammonia-lyase 1 (PhPAL1), PhPAL2b, non-expressor of pathogenesis-related proteins 1 (PhNPR1), and PhPR1 in SA biosynthesis and signaling pathway. SA treatment restored the reduced TRV resistance to WT levels in PhWRKY30-RNAi plants, and application of SA biosynthesis inhibitor 2-aminoindan-2-phosphonic acid inhibited promoted resistance in PhWRKY30-OE plants. The protein-DNA binding assays showed that PhWRKY30 specifically bound to the promoter of PhPAL2b. RNAi silencing and overexpression of PhPAL2b led to decreased and increased TRV resistance, respectively. The transcription of a number of reactive oxygen species- and RNA silencing-associated genes was changed in PhWRKY30 and PhPAL2b transgenic lines. PhWRKY30 and PhPAL2b were further characterized to be involved in the resistance to Tobacco mosaic virus (TMV) invasion. Our findings demonstrate that PhWRKY30 positively regulates antiviral defense against TRV and TMV infections by modulating SA content.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"3 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf013","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Petunia (Petunia hybrida) plants are highly threatened by a diversity of viruses, causing substantial damage to ornamental quality and seed yield. However, the regulatory mechanism of virus resistance in petunia is largely unknown. Here, we revealed that a member of petunia WRKY transcription factors, PhWRKY30, was dramatically up-regulated following Tobacco rattle virus (TRV) infection. Down-regulation of PhWRKY30 through TRV-based virus-induced gene silencing increased green fluorescent protein (GFP)-marked TRV RNA accumulation and exacerbated the symptomatic severity. In comparison to wild-type (WT) plants, PhWRKY30-RNAi transgenic petunia plants exhibited a compromised resistance to TRV infection, whereas an enhanced resistance was observed in PhWRKY30-overexpressing (OE) transgenic plants. PhWRKY30 affected salicylic acid (SA) production and expression of arogenate dehydratase 1 (PhADT1), phenylalanine ammonia-lyase 1 (PhPAL1), PhPAL2b, non-expressor of pathogenesis-related proteins 1 (PhNPR1), and PhPR1 in SA biosynthesis and signaling pathway. SA treatment restored the reduced TRV resistance to WT levels in PhWRKY30-RNAi plants, and application of SA biosynthesis inhibitor 2-aminoindan-2-phosphonic acid inhibited promoted resistance in PhWRKY30-OE plants. The protein-DNA binding assays showed that PhWRKY30 specifically bound to the promoter of PhPAL2b. RNAi silencing and overexpression of PhPAL2b led to decreased and increased TRV resistance, respectively. The transcription of a number of reactive oxygen species- and RNA silencing-associated genes was changed in PhWRKY30 and PhPAL2b transgenic lines. PhWRKY30 and PhPAL2b were further characterized to be involved in the resistance to Tobacco mosaic virus (TMV) invasion. Our findings demonstrate that PhWRKY30 positively regulates antiviral defense against TRV and TMV infections by modulating SA content.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
期刊最新文献
Modulation of morphogenesis and metabolism by plant cell biomechanics: From model plants to traditional herbs VviWRKY24 promotes β-damascenone biosynthesis by targeting VviNCED1 to increase abscisic acid in grape berries Investigating Vesicle-Mediated Regulation of Pollen Tube Growth through BFA Inhibition and AS-ODN Targeting of TfRABA4D in Torenia fournieri Association of the tomato co-chaperone gene Sldnaj harboring a promoter deletion with susceptibility to Tomato spotted wilt virus (TSWV) PpERF17 alleviates peach fruit postharvest chilling injury under elevated CO2 by activating jasmonic acid and γ-aminobutyric acid biosynthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1