{"title":"Altering Lipid A Precursor Ion Types in the Gas Phase for In-Depth Structural Elucidation via Tandem Mass Spectrometry","authors":"Hsi-Chun Chao, Scott A. McLuckey","doi":"10.1021/acs.analchem.4c05910","DOIUrl":null,"url":null,"abstract":"Lipid A, a well-known saccharolipid, acts as the inner lipid–glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges. In this work, we present a comprehensive strategy combining condensed-phase sample preparation, electrospray ionization, and gas-phase ion/ion reactions with tandem mass spectrometry for detailed lipid A structural elucidation. We use proton transfer reactions, charge-inversion reactions, and sequential ion/ion reactions for magnesium transfer to generate targeted lipid A ions. The strategy, established with a synthetic monophosphoryl lipid A (MPLA) and known MPLA and diphosphorylated lipid A (DPLA) from <i>Escherichia coli</i> F583, demonstrated that [MPLA – 2H]<sup>2–</sup>, [MPLA – H]<sup>−</sup>, and [MPLA – H + Mg]<sup>+</sup> precursor ions offer complementary information for MPLA, while [DPLA – H]<sup>−</sup>, [DPLA + H]<sup>+</sup>, and [DPLA – H + Mg]<sup>+</sup> precursor ions provide analogous information for DPLA analysis. We validated the strategy using known lipid A species and also successfully applied this strategy to profile unknown MPLA and DPLA in the same <i>E. coli</i> strain.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"26 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05910","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid A, a well-known saccharolipid, acts as the inner lipid–glycan anchor of lipopolysaccharides in Gram-negative bacterial cell membranes and functions as an endotoxin. Its structure is composed of two glucosamines with β(1 → 6) linkages and various fatty acyl and phosphate groups. The lipid A structure can be used for the identification of bacterial species, but its complexity poses significant structural characterization challenges. In this work, we present a comprehensive strategy combining condensed-phase sample preparation, electrospray ionization, and gas-phase ion/ion reactions with tandem mass spectrometry for detailed lipid A structural elucidation. We use proton transfer reactions, charge-inversion reactions, and sequential ion/ion reactions for magnesium transfer to generate targeted lipid A ions. The strategy, established with a synthetic monophosphoryl lipid A (MPLA) and known MPLA and diphosphorylated lipid A (DPLA) from Escherichia coli F583, demonstrated that [MPLA – 2H]2–, [MPLA – H]−, and [MPLA – H + Mg]+ precursor ions offer complementary information for MPLA, while [DPLA – H]−, [DPLA + H]+, and [DPLA – H + Mg]+ precursor ions provide analogous information for DPLA analysis. We validated the strategy using known lipid A species and also successfully applied this strategy to profile unknown MPLA and DPLA in the same E. coli strain.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.