Arkaprabha Banerjee, Hyuntae Byun, Andrew J. Hrycko, Qinqin Pu, Mary R. Brockett, Nathaniel C. Esteves, Jennifer R. Miller, Qiushi Li, Amy T. Ma, Jun Zhu
{"title":"In Vivo Nitrosative Stress‐Induced Expression of a Photolyase Promotes Vibrio cholerae Environmental Blue Light Resistance","authors":"Arkaprabha Banerjee, Hyuntae Byun, Andrew J. Hrycko, Qinqin Pu, Mary R. Brockett, Nathaniel C. Esteves, Jennifer R. Miller, Qiushi Li, Amy T. Ma, Jun Zhu","doi":"10.1111/mmi.15340","DOIUrl":null,"url":null,"abstract":"Bacterial pathogens possess a remarkable capacity to sense and adapt to ever‐changing environments. For example, <jats:styled-content style=\"fixed-case\"><jats:italic>Vibrio cholerae</jats:italic></jats:styled-content>, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of <jats:styled-content style=\"fixed-case\"><jats:italic>V. cholerae</jats:italic></jats:styled-content>. Among these, we identified <jats:italic>cry1</jats:italic> as critical for resistance to blue light, as mutations in this gene, but not in the other photolyase genes, rendered <jats:styled-content style=\"fixed-case\"><jats:italic>V. cholerae</jats:italic></jats:styled-content> susceptible to such stress. Expression of <jats:italic>cry1</jats:italic> was induced by blue light and regulated by RpoE and the anti‐sigma factor ChrR. We further showed that nitric oxide (NO), a host‐derived stressor encountered during infection, also activated <jats:italic>cry1</jats:italic> expression. We found that one of the two cysteine residues in ChrR was important for sensing reactive nitrogen species (RNS), thereby modulating <jats:italic>cry1</jats:italic> expression. While Cry1 was not required for <jats:styled-content style=\"fixed-case\"><jats:italic>V. cholerae</jats:italic></jats:styled-content> colonization in animal models, pre‐induction of Cry1 by RNS in vivo or in vitro enhanced <jats:styled-content style=\"fixed-case\"><jats:italic>V. cholerae</jats:italic></jats:styled-content> resistance to blue light. These findings suggest that host‐derived NO encountered during infection primes <jats:styled-content style=\"fixed-case\"><jats:italic>V. cholerae</jats:italic></jats:styled-content> for survival in blue‐light‐rich aquatic environments, supporting its transition between host and environmental niches.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"14 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15340","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial pathogens possess a remarkable capacity to sense and adapt to ever‐changing environments. For example, Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of V. cholerae. Among these, we identified cry1 as critical for resistance to blue light, as mutations in this gene, but not in the other photolyase genes, rendered V. cholerae susceptible to such stress. Expression of cry1 was induced by blue light and regulated by RpoE and the anti‐sigma factor ChrR. We further showed that nitric oxide (NO), a host‐derived stressor encountered during infection, also activated cry1 expression. We found that one of the two cysteine residues in ChrR was important for sensing reactive nitrogen species (RNS), thereby modulating cry1 expression. While Cry1 was not required for V. cholerae colonization in animal models, pre‐induction of Cry1 by RNS in vivo or in vitro enhanced V. cholerae resistance to blue light. These findings suggest that host‐derived NO encountered during infection primes V. cholerae for survival in blue‐light‐rich aquatic environments, supporting its transition between host and environmental niches.
期刊介绍:
Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses.
Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.