Hydrothermal conditions dominated sensitivity and lag effect of grassland productivity in Yunnan Province, China: Implications for climate change

IF 5.9 1区 农林科学 Q1 AGRONOMY Agricultural Water Management Pub Date : 2025-01-15 DOI:10.1016/j.agwat.2025.109293
Yan Fang, Long Wan, Jing Tong, Guijing Li, Jing Pang, Enfu Chang, Linglan Chen, Zixuan Shi
{"title":"Hydrothermal conditions dominated sensitivity and lag effect of grassland productivity in Yunnan Province, China: Implications for climate change","authors":"Yan Fang, Long Wan, Jing Tong, Guijing Li, Jing Pang, Enfu Chang, Linglan Chen, Zixuan Shi","doi":"10.1016/j.agwat.2025.109293","DOIUrl":null,"url":null,"abstract":"Net primary productivity (NPP) is an important indicator of carbon and water cycles in grassland ecosystems and is highly sensitive to climate change. This study focused on grassland and its sub-regions in Yunnan Province and analyzed the productivity of grassland ecosystems under different hydrothermal conditions from 2001 to 2021. The results indicated that grassland experienced a warming and drying trend, with an overall upward trend averaging 5.30 gC·m<ce:sup loc=\"post\">−2</ce:sup>·a<ce:sup loc=\"post\">−1</ce:sup>. Notably, the central Yunnan Plateau region boasted the highest productivity growth rate, reaching 7.67 gC·m<ce:sup loc=\"post\">−2</ce:sup>·a<ce:sup loc=\"post\">−1</ce:sup>. The response of grassland productivity to climate change under different hydrothermal conditions exhibited distinct spatial heterogeneity and complexity. Grasslands in the hot and humid zone of southwestern Yunnan presented the highest sensitivity to changes in precipitation, temperature, and solar radiation, at 3.08 (gC·m<ce:sup loc=\"post\">−2</ce:sup>·a<ce:sup loc=\"post\">−1</ce:sup>)/mm, 53.3 (gC·m<ce:sup loc=\"post\">−2</ce:sup>·a<ce:sup loc=\"post\">−1</ce:sup>)/°C, and 4.07 (gC·m<ce:sup loc=\"post\">−2</ce:sup>·a<ce:sup loc=\"post\">−1</ce:sup>)/(MJ·m<ce:sup loc=\"post\">−2</ce:sup>), respectively. In the Qinghai-Tibetan Plateau alpine region, rising temperatures contributed to productivity growth. In contrast, warmer temperatures and water stress led to a decline in grassland productivity in the hot and dry vally of the Jinsha River. In addition, grassland productivity showed variable lag effects in different hydrothermal regions. The areas where grassland productivity with a 3-month lag effects in response to temperature, precipitation, and solar radiation accounted for 25.26 %, 34.52 %, and 16.04 % of the region, respectively. The grassland productivity responses to temperature and precipitation exhibited a long lag effect, primarily observed in dry and hot areas. This study is crucial for guiding adaptive vegetation management in Yunnan grassland ecosystems under different hydrothermal conditions to better cope with climate change.","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"93 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agwat.2025.109293","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Net primary productivity (NPP) is an important indicator of carbon and water cycles in grassland ecosystems and is highly sensitive to climate change. This study focused on grassland and its sub-regions in Yunnan Province and analyzed the productivity of grassland ecosystems under different hydrothermal conditions from 2001 to 2021. The results indicated that grassland experienced a warming and drying trend, with an overall upward trend averaging 5.30 gC·m−2·a−1. Notably, the central Yunnan Plateau region boasted the highest productivity growth rate, reaching 7.67 gC·m−2·a−1. The response of grassland productivity to climate change under different hydrothermal conditions exhibited distinct spatial heterogeneity and complexity. Grasslands in the hot and humid zone of southwestern Yunnan presented the highest sensitivity to changes in precipitation, temperature, and solar radiation, at 3.08 (gC·m−2·a−1)/mm, 53.3 (gC·m−2·a−1)/°C, and 4.07 (gC·m−2·a−1)/(MJ·m−2), respectively. In the Qinghai-Tibetan Plateau alpine region, rising temperatures contributed to productivity growth. In contrast, warmer temperatures and water stress led to a decline in grassland productivity in the hot and dry vally of the Jinsha River. In addition, grassland productivity showed variable lag effects in different hydrothermal regions. The areas where grassland productivity with a 3-month lag effects in response to temperature, precipitation, and solar radiation accounted for 25.26 %, 34.52 %, and 16.04 % of the region, respectively. The grassland productivity responses to temperature and precipitation exhibited a long lag effect, primarily observed in dry and hot areas. This study is crucial for guiding adaptive vegetation management in Yunnan grassland ecosystems under different hydrothermal conditions to better cope with climate change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
期刊最新文献
Generating high-precision farmland irrigation pattern maps using remotely sensed ecological indices and machine learning algorithms Hydrothermal conditions dominated sensitivity and lag effect of grassland productivity in Yunnan Province, China: Implications for climate change Increasing exposure of cotton growing areas to compound drought and heat events in a warming climate Unraveling the interplay between NDVI, soil moisture, and snowmelt: A comprehensive analysis of the Tibetan Plateau agroecosystem A new regional reference evapotranspiration model based on quantile approximation of meteorological variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1