{"title":"A new regional reference evapotranspiration model based on quantile approximation of meteorological variables","authors":"Guomin Huang, Jianhua Dong, Lifeng Wu, Jingwei Luo, Rangjian Qiu, Yaokui Cui, Yicheng Wang","doi":"10.1016/j.agwat.2025.109299","DOIUrl":null,"url":null,"abstract":"Reference evapotranspiration (ETo) is a variable that can assist in estimating agricultural water use in water-scarce regions. Estimating ETo with limited data is an important alternative to overcome the current shortage of meteorological data in many areas around the world. For this purpose, this study introduces a new method for establishing a simplified regional ETo model. The method, which creating ETo models based on temperature at meteorological stations that have the highest quantile matching with the target station's meteorological variables based on the closest meteorological data characteristics. To test the performance of the new method, we used data from 120 meteorological stations in Northwest China from 2000 to 2021 to develop XGBoost models to establish the new regional ETo model. We compared the proposed method with local models and two conventional regional ETo models to evaluate its performance. While the new method increased the Root Mean Square Error (RMSE) by an average of 13.4 % compared to local models, it demonstrated significant advantages over conventional regional models. Specifically, the RMSE decreased by 6.4–7.1 %, the Normalized RMSE (NRMSE) decreased by 5.5–7.3 %, computation time was reduced by 18.4–21.8 times, and spatial memory usage was reduced by 147–211 %. These improvements make the proposed method more efficient and scalable, particularly for regional applications in data-scarce areas.","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"53 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.agwat.2025.109299","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Reference evapotranspiration (ETo) is a variable that can assist in estimating agricultural water use in water-scarce regions. Estimating ETo with limited data is an important alternative to overcome the current shortage of meteorological data in many areas around the world. For this purpose, this study introduces a new method for establishing a simplified regional ETo model. The method, which creating ETo models based on temperature at meteorological stations that have the highest quantile matching with the target station's meteorological variables based on the closest meteorological data characteristics. To test the performance of the new method, we used data from 120 meteorological stations in Northwest China from 2000 to 2021 to develop XGBoost models to establish the new regional ETo model. We compared the proposed method with local models and two conventional regional ETo models to evaluate its performance. While the new method increased the Root Mean Square Error (RMSE) by an average of 13.4 % compared to local models, it demonstrated significant advantages over conventional regional models. Specifically, the RMSE decreased by 6.4–7.1 %, the Normalized RMSE (NRMSE) decreased by 5.5–7.3 %, computation time was reduced by 18.4–21.8 times, and spatial memory usage was reduced by 147–211 %. These improvements make the proposed method more efficient and scalable, particularly for regional applications in data-scarce areas.
期刊介绍:
Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.