A seasonal matrix population model for ixodid ticks with complex life histories and limited host availability

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY Ecology Pub Date : 2025-01-16 DOI:10.1002/ecy.4511
Yngvild Vindenes, Atle Mysterud
{"title":"A seasonal matrix population model for ixodid ticks with complex life histories and limited host availability","authors":"Yngvild Vindenes, Atle Mysterud","doi":"10.1002/ecy.4511","DOIUrl":null,"url":null,"abstract":"Many vector‐borne diseases are sensitive to changes in land use and climate; hence, it is important to understand the factors that govern the vector populations. Ixodid ticks, which serve as vectors for multiple diseases, have a slow life cycle compared with many of their hosts. The observable questing population represents only a fraction of the total tick population and may include overlapping cohorts in each stage. The duration of each life stage (larvae, nymph, and adult) is variable and depends on factors such as the seasonal timing of questing, development, and host availability. Mathematical models are therefore essential to mediate how complex life cycle transitions and host interactions underpin the seasonal dynamics of the questing tick population. In this study, we develop a seasonal matrix population model for ixodid ticks feeding on a small and large host. The model has 17 stages representing the main life history stages (eggs, larvae, nymphs, and adults) combined with status of feeding, seasonal timing of feeding, and overwintering. The probability of finding a host depends on tick instar and host type, and density regulation is incorporated through limited host capacity. Using a life history representing <jats:italic>Ixodes ricinus</jats:italic> in Northern Europe as a baseline, we extract seasonal numbers of different parts of the tick population and calculate life history outcomes such as generation time and mean and variance of lifespan and of lifetime reproductive output. These results are compared with an alternative scenario of a southern life history. Secondly, we investigate (1) effects of seasonality in the small host availability on the seasonal numbers of tick stages and (2) effects of varying host availability and utilization of small versus large hosts by larvae and nymphs, on the seasonal numbers of questing ticks. Our results suggest that the small host availability is an important regulating factor through the feeding of larvae. Our model incorporates complex mechanisms underlying the seasonal composition of the tick population. It can be applied to different ixodid tick species and provides a framework for future investigations into intra‐ and interspecific variation in life history and population dynamics.","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"3 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/ecy.4511","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Many vector‐borne diseases are sensitive to changes in land use and climate; hence, it is important to understand the factors that govern the vector populations. Ixodid ticks, which serve as vectors for multiple diseases, have a slow life cycle compared with many of their hosts. The observable questing population represents only a fraction of the total tick population and may include overlapping cohorts in each stage. The duration of each life stage (larvae, nymph, and adult) is variable and depends on factors such as the seasonal timing of questing, development, and host availability. Mathematical models are therefore essential to mediate how complex life cycle transitions and host interactions underpin the seasonal dynamics of the questing tick population. In this study, we develop a seasonal matrix population model for ixodid ticks feeding on a small and large host. The model has 17 stages representing the main life history stages (eggs, larvae, nymphs, and adults) combined with status of feeding, seasonal timing of feeding, and overwintering. The probability of finding a host depends on tick instar and host type, and density regulation is incorporated through limited host capacity. Using a life history representing Ixodes ricinus in Northern Europe as a baseline, we extract seasonal numbers of different parts of the tick population and calculate life history outcomes such as generation time and mean and variance of lifespan and of lifetime reproductive output. These results are compared with an alternative scenario of a southern life history. Secondly, we investigate (1) effects of seasonality in the small host availability on the seasonal numbers of tick stages and (2) effects of varying host availability and utilization of small versus large hosts by larvae and nymphs, on the seasonal numbers of questing ticks. Our results suggest that the small host availability is an important regulating factor through the feeding of larvae. Our model incorporates complex mechanisms underlying the seasonal composition of the tick population. It can be applied to different ixodid tick species and provides a framework for future investigations into intra‐ and interspecific variation in life history and population dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
期刊最新文献
Do wood‐boring beetles influence the flammability of deadwood? Ecological and anthropogenic drivers of local extinction and colonization of giant pandas over the past 30 years An experimental test of eco‐evolutionary dynamics on rocky shores Warming‐induced changes in seasonal priority effects drive shifts in community composition Statistical power and the detection of global change responses: The case of leaf production in old‐growth forests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1