iLoc: An Adaptive, Efficient, and Robust Visual Localization System

IF 10.5 1区 计算机科学 Q1 ROBOTICS IEEE Transactions on Robotics Pub Date : 2025-01-15 DOI:10.1109/TRO.2025.3530273
Peng Yin;Shiqi Zhao;Jing Wang;Ruohai Ge;Jianmin Ji;Yeping Hu;Huaping Liu;Jianda Han
{"title":"iLoc: An Adaptive, Efficient, and Robust Visual Localization System","authors":"Peng Yin;Shiqi Zhao;Jing Wang;Ruohai Ge;Jianmin Ji;Yeping Hu;Huaping Liu;Jianda Han","doi":"10.1109/TRO.2025.3530273","DOIUrl":null,"url":null,"abstract":"In this article, we introduce <italic>iLoc</i>, an innovative visual localization system designed to enhance the autonomy and adaptability of robotic agents in long-term and large-scale applications. <italic>iLoc</i> specializes in: 1) extracting stable and consistent descriptors for place recognition, unaffected by changes in viewpoint and illumination; 2) performing swift and precise global relocalization to establish a robot's position within a large and complex environment; and 3) generating real-time tracking trajectories aligned with reference maps, ensuring continual orientation within known spaces. Distinctively, <italic>iLoc</i> incorporates a transformer-based learning module and an attention-enhanced recognition approach, enabling it to adapt to diverse environmental and viewpoint conditions. <italic>iLoc</i> leverages a coarse-to-fine global feature matching technique for enhanced localization and integrates robust state estimation combining visual odometry and loop closures through local refinement and pose graph optimization. <italic>iLoc</i> demonstrates remarkable proficiency in place recognition, achieving localization over distances of up to 2 km within 0.5 s with average accuracy at 1 m. It maintains stable localization accuracy, even under variable conditions. Its versatile design allows integration across various environments, significantly broadening the scope of universal localization capabilities in robotics. <italic>iLoc</i> represents a substantial step forward in visual-based localization systems, delivering unparalleled speed and accuracy in place recognition. Its ability to adapt and respond to diverse environmental stimuli marks it as a crucial tool in advancing the field of robotic localization.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2709-2726"},"PeriodicalIF":10.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10842457/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce iLoc, an innovative visual localization system designed to enhance the autonomy and adaptability of robotic agents in long-term and large-scale applications. iLoc specializes in: 1) extracting stable and consistent descriptors for place recognition, unaffected by changes in viewpoint and illumination; 2) performing swift and precise global relocalization to establish a robot's position within a large and complex environment; and 3) generating real-time tracking trajectories aligned with reference maps, ensuring continual orientation within known spaces. Distinctively, iLoc incorporates a transformer-based learning module and an attention-enhanced recognition approach, enabling it to adapt to diverse environmental and viewpoint conditions. iLoc leverages a coarse-to-fine global feature matching technique for enhanced localization and integrates robust state estimation combining visual odometry and loop closures through local refinement and pose graph optimization. iLoc demonstrates remarkable proficiency in place recognition, achieving localization over distances of up to 2 km within 0.5 s with average accuracy at 1 m. It maintains stable localization accuracy, even under variable conditions. Its versatile design allows integration across various environments, significantly broadening the scope of universal localization capabilities in robotics. iLoc represents a substantial step forward in visual-based localization systems, delivering unparalleled speed and accuracy in place recognition. Its ability to adapt and respond to diverse environmental stimuli marks it as a crucial tool in advancing the field of robotic localization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种自适应、高效、鲁棒的视觉定位系统
在本文中,我们介绍了一种创新的视觉定位系统iLoc,该系统旨在增强机器人代理在长期和大规模应用中的自主性和适应性。iLoc擅长:1)提取稳定一致的位置识别描述符,不受视点和光照变化的影响;2)在庞大复杂的环境中进行快速精确的全局重新定位,建立机器人的位置;3)生成与参考地图对齐的实时跟踪轨迹,确保在已知空间内连续定向。特别的是,iLoc结合了基于转换器的学习模块和注意力增强识别方法,使其能够适应不同的环境和视点条件。iLoc利用一种从粗到精的全局特征匹配技术来增强定位,并通过局部细化和姿态图优化集成了结合视觉里程计和闭环的鲁棒状态估计。iLoc在位置识别方面表现出了卓越的能力,在0.5秒内实现了2公里范围内的定位,平均精度为1米。即使在变化的条件下,也能保持稳定的定位精度。它的多功能设计允许在各种环境中集成,大大扩大了机器人的通用定位能力的范围。iLoc代表了基于视觉的定位系统向前迈出的重要一步,提供了无与伦比的速度和准确性。其适应和响应各种环境刺激的能力标志着它是推进机器人定位领域的关键工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
期刊最新文献
EROAM: Event-Based Camera Rotational Odometry and Mapping in Real-Time Low-Latency Event-Based Velocimetry for Quadrotor Control in a Narrow Pipe Koopman Operators in Robot Learning Safe and Efficient Quadrupedal Locomotion with A Chambolle-Pock Whole-Body Controller SEVAC: Sample Efficient Variational Actor Critic for Reliable Navigation Learning in Uncertain Topological Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1