Zachary T. Brawley, Sindhana Pannir-Sivajothi, Ju Eun Yim, Yong Rui Poh, Joel Yuen-Zhou, Matthew Sheldon
{"title":"Vibrational weak and strong coupling modify a chemical reaction via cavity-mediated radiative energy transfer","authors":"Zachary T. Brawley, Sindhana Pannir-Sivajothi, Ju Eun Yim, Yong Rui Poh, Joel Yuen-Zhou, Matthew Sheldon","doi":"10.1038/s41557-024-01723-6","DOIUrl":null,"url":null,"abstract":"<p>Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate. We demonstrate that light–matter coupling reduces the onset temperature for dehydration by up to 14 °C, and we attribute this effect to enhanced radiative energy transport that is mediated by resonant electromagnetic modes, eliminating temperature gradients in the coupled system. Our findings provide direct evidence of localized energy transfer leading to modified chemical behaviour in specific regions of high optical density of states. This work establishes a mechanism for modifying thermally driven chemical processes using optical cavities, with implications for the development of catalytic systems that exploit these tailored interactions to achieve targeted reaction control.</p><figure></figure>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":"29 1","pages":""},"PeriodicalIF":19.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01723-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Controlling reaction outcomes through external influences is a central goal in chemistry. Vibrational coupling between molecular vibrations and cavity modes is rapidly emerging as a distinct strategy compared with conventional thermochemical and photochemical methods; however, insight into the fundamental mechanisms remains limited. Here we investigate how vibrational weak and strong coupling in plasmonic nanocavities modifies the thermal dehydration of copper sulfate pentahydrate. We demonstrate that light–matter coupling reduces the onset temperature for dehydration by up to 14 °C, and we attribute this effect to enhanced radiative energy transport that is mediated by resonant electromagnetic modes, eliminating temperature gradients in the coupled system. Our findings provide direct evidence of localized energy transfer leading to modified chemical behaviour in specific regions of high optical density of states. This work establishes a mechanism for modifying thermally driven chemical processes using optical cavities, with implications for the development of catalytic systems that exploit these tailored interactions to achieve targeted reaction control.
期刊介绍:
Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry.
The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry.
Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry.
Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests.
Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.