{"title":"Alcoholysis of High-Solid xylose residue for methyl levulinate preparation and its kinetics","authors":"Zhen Ma, Jingyang Zhang, Yucheng Lin, Xiuli Han, Haoran Wu, Chunbao Xu, Chun Chang","doi":"10.1016/j.biortech.2025.132063","DOIUrl":null,"url":null,"abstract":"Achieving the efficient biomass alcoholysis to methyl levulinate (ML) under high solid content conditions and establishing its kinetic model are crucial, but remain challenging. Here, the alcoholysis of microcrystalline cellulose (MC) and xylose residue (XR) to ML under high solid content conditions using CuSO<ce:inf loc=\"post\">4</ce:inf> as a catalyst was reported. High yield (34.96 wt%) and concentration (41.48 g/L) of ML from MC alcoholysis are achieved under the optimal conditions. Meanwhile, the yield and concentration of ML from XR alcoholysis can reach 26.73 wt% and 31.72 g/L, respectively. The alcoholysis pathways of MC and XR are proposed. A mixed model consisting of a shrinking core model and a pseudo-first-order kinetic model was established to elucidate the alcoholysis behavior of biomass. The generation of glucose is the rate-limiting step of the alcoholysis process, and there is no significant dependence between the activation energies of main reactions and the solid content of biomass.","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"7 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biortech.2025.132063","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving the efficient biomass alcoholysis to methyl levulinate (ML) under high solid content conditions and establishing its kinetic model are crucial, but remain challenging. Here, the alcoholysis of microcrystalline cellulose (MC) and xylose residue (XR) to ML under high solid content conditions using CuSO4 as a catalyst was reported. High yield (34.96 wt%) and concentration (41.48 g/L) of ML from MC alcoholysis are achieved under the optimal conditions. Meanwhile, the yield and concentration of ML from XR alcoholysis can reach 26.73 wt% and 31.72 g/L, respectively. The alcoholysis pathways of MC and XR are proposed. A mixed model consisting of a shrinking core model and a pseudo-first-order kinetic model was established to elucidate the alcoholysis behavior of biomass. The generation of glucose is the rate-limiting step of the alcoholysis process, and there is no significant dependence between the activation energies of main reactions and the solid content of biomass.
期刊介绍:
Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies.
Topics include:
• Biofuels: liquid and gaseous biofuels production, modeling and economics
• Bioprocesses and bioproducts: biocatalysis and fermentations
• Biomass and feedstocks utilization: bioconversion of agro-industrial residues
• Environmental protection: biological waste treatment
• Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.