Predicting Chlorophyll-a Concentrations in the World’s Largest Lakes Using Kolmogorov-Arnold Networks

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL 环境科学与技术 Pub Date : 2025-01-16 DOI:10.1021/acs.est.4c11113
Mohammad Javad Saravani, Roohollah Noori, Changhyun Jun, Dongkyun Kim, Sayed M. Bateni, Peiman Kianmehr, Richard Iestyn Woolway
{"title":"Predicting Chlorophyll-a Concentrations in the World’s Largest Lakes Using Kolmogorov-Arnold Networks","authors":"Mohammad Javad Saravani, Roohollah Noori, Changhyun Jun, Dongkyun Kim, Sayed M. Bateni, Peiman Kianmehr, Richard Iestyn Woolway","doi":"10.1021/acs.est.4c11113","DOIUrl":null,"url":null,"abstract":"Accurate prediction of chlorophyll-<i>a</i> (Chl-<i>a</i>) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl-<i>a</i> concentrations in large lakes. Monthly remote-sensed Chl-<i>a</i> data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The models were evaluated based on their forecasting capabilities from March 2024 to August 2024. KAN consistently outperformed others in both test and forecast (unseen data) phases and demonstrated superior accuracy in capturing trends, dynamic fluctuations, and peak Chl-<i>a</i> concentrations. Statistical evaluation using ranking metrics and critical difference diagrams confirmed KAN’s robust performance across diverse study sites, further emphasizing its predictive power. Our findings suggest that the KAN, which leverages the KA representation theorem, offers improved handling of nonlinearity and long-term dependencies in time-series Chl-<i>a</i> data, outperforming neural network models grounded in the universal approximation theorem and traditional machine learning algorithms.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"42 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c11113","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of chlorophyll-a (Chl-a) concentrations, a key indicator of eutrophication, is essential for the sustainable management of lake ecosystems. This study evaluated the performance of Kolmogorov-Arnold Networks (KANs) along with three neural network models (MLP-NN, LSTM, and GRU) and three traditional machine learning tools (RF, SVR, and GPR) for predicting time-series Chl-a concentrations in large lakes. Monthly remote-sensed Chl-a data derived from Aqua-MODIS spanning September 2002 to April 2024 were used. The models were evaluated based on their forecasting capabilities from March 2024 to August 2024. KAN consistently outperformed others in both test and forecast (unseen data) phases and demonstrated superior accuracy in capturing trends, dynamic fluctuations, and peak Chl-a concentrations. Statistical evaluation using ranking metrics and critical difference diagrams confirmed KAN’s robust performance across diverse study sites, further emphasizing its predictive power. Our findings suggest that the KAN, which leverages the KA representation theorem, offers improved handling of nonlinearity and long-term dependencies in time-series Chl-a data, outperforming neural network models grounded in the universal approximation theorem and traditional machine learning algorithms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Kolmogorov-Arnold网络预测世界最大湖泊的叶绿素-a浓度
叶绿素-a (Chl-a)浓度的准确预测是湖泊富营养化的重要指标,对湖泊生态系统的可持续管理至关重要。本研究评估了Kolmogorov-Arnold网络(KANs)以及三种神经网络模型(MLP-NN, LSTM和GRU)和三种传统机器学习工具(RF, SVR和GPR)预测大型湖泊时间序列Chl-a浓度的性能。利用Aqua-MODIS 2002年9月至2024年4月的逐月遥感Chl-a数据。根据2024年3月至2024年8月的预测能力对模型进行了评价。KAN在测试和预测(未见数据)阶段始终优于其他工具,并且在捕获趋势、动态波动和峰值Chl-a浓度方面表现出更高的准确性。使用排名指标和关键差异图的统计评估证实了KAN在不同研究地点的稳健表现,进一步强调了其预测能力。我们的研究结果表明,利用KA表示定理的KAN可以更好地处理时间序列Chl-a数据中的非线性和长期依赖性,优于基于通用近似定理和传统机器学习算法的神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
期刊最新文献
Fatty Acid Profiles Linked to Organohalogen Exposure in Cetaceans from the Northern South China Sea A Scalable Calibration Method for Enhanced Accuracy in Dense Air Quality Monitoring Networks Novel Nonaqueous PD/PZ/NMP Absorbent for Energy-Efficient CO2 Capture: Insights into the Crystal-Phase Regulation Mechanism of the Powdery Product Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and H2O2 Microplastics Settling in Turbid Water: Impacts of Sediments-Induced Flow Patterns on Particle Deposition Rates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1