Boron, nitrogen co-doped biomass-derived multilayer-graphene encapsulated Co nanoparticles as highly efficient catalysts for the selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran
Xiaoqing Liao, Haishuai Cui, Hean Luo, Yang Lv, Pingle Liu
{"title":"Boron, nitrogen co-doped biomass-derived multilayer-graphene encapsulated Co nanoparticles as highly efficient catalysts for the selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran","authors":"Xiaoqing Liao, Haishuai Cui, Hean Luo, Yang Lv, Pingle Liu","doi":"10.1016/j.cej.2025.159602","DOIUrl":null,"url":null,"abstract":"Highly efficient conversion of biomass derivative 5-hydroxymethylfurfural (HMF) into biofuel 2,5-dimethylfuran (DMF) using non-noble metal catalysts is attractive but challenging. In this work, boron (B), nitrogen (N) co-doped biomass-derived multilayer-graphene encapsulated Co catalysts (Co@BNG) were prepared and applied in the selective hydrodeoxygenation of HMF to DMF. Extensive analyses demonstrated that the synergistic effect between carbon layer confinement and B, N co-doping facilitated the formation of ultrafine Co nanoparticles, which in turn promoted Co reduction and increased the amount of metal Co. Specifically, B doping induced the formation of more defects and increased the amount of pyridinic-N and Co-N<ce:inf loc=\"post\">x</ce:inf>. More significantly, B doping promoted the formation of electron-deficient Co centers (Co-N<ce:inf loc=\"post\">x</ce:inf>/B) by transferring more electrons from Co to the adjacent B and N, which could act as Lewis acid sites for C=O activation and subsequent C-OH breaking during the hydrogenation-hydrogenolysis of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) and DMF. Remarkably, <ce:italic>in-situ</ce:italic> DRIFTS revealed that Co@B<ce:inf loc=\"post\">0.2</ce:inf>NG preferentially activated C=O/C-OH groups to produce 5-methyfurfuryl alcohol (MFA), the critical intermediate that determines the formation of DMF. Furthermore, theoretical calculations further confirmed that B doping strengthened the electronic interactions between Co and neighboring N/B atoms to form electron-deficient Co centers. Significantly, Co-B<ce:inf loc=\"post\">1</ce:inf>N<ce:inf loc=\"post\">3</ce:inf>C model displayed the optimal adsorption (H<ce:inf loc=\"post\">2</ce:inf>, HMF, and BHMF) and desorption (H* and DMF) behaviors, along with the lowest activation energy for the rate-determining step of BHMF to MFA. Encouragingly, Co@B<ce:inf loc=\"post\">0.2</ce:inf>NG exhibited exceptional recyclability and gave 99.9 % yield of BHMF at 100 ℃ and 99.2 % yield of DMF at 140 ℃. This work offers a new approach for the development of non-noble metal catalysts that are highly efficient, durable, and low-cost for the hydrodeoxygenation of renewable biomass into high-value compounds.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"96 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.159602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Highly efficient conversion of biomass derivative 5-hydroxymethylfurfural (HMF) into biofuel 2,5-dimethylfuran (DMF) using non-noble metal catalysts is attractive but challenging. In this work, boron (B), nitrogen (N) co-doped biomass-derived multilayer-graphene encapsulated Co catalysts (Co@BNG) were prepared and applied in the selective hydrodeoxygenation of HMF to DMF. Extensive analyses demonstrated that the synergistic effect between carbon layer confinement and B, N co-doping facilitated the formation of ultrafine Co nanoparticles, which in turn promoted Co reduction and increased the amount of metal Co. Specifically, B doping induced the formation of more defects and increased the amount of pyridinic-N and Co-Nx. More significantly, B doping promoted the formation of electron-deficient Co centers (Co-Nx/B) by transferring more electrons from Co to the adjacent B and N, which could act as Lewis acid sites for C=O activation and subsequent C-OH breaking during the hydrogenation-hydrogenolysis of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) and DMF. Remarkably, in-situ DRIFTS revealed that Co@B0.2NG preferentially activated C=O/C-OH groups to produce 5-methyfurfuryl alcohol (MFA), the critical intermediate that determines the formation of DMF. Furthermore, theoretical calculations further confirmed that B doping strengthened the electronic interactions between Co and neighboring N/B atoms to form electron-deficient Co centers. Significantly, Co-B1N3C model displayed the optimal adsorption (H2, HMF, and BHMF) and desorption (H* and DMF) behaviors, along with the lowest activation energy for the rate-determining step of BHMF to MFA. Encouragingly, Co@B0.2NG exhibited exceptional recyclability and gave 99.9 % yield of BHMF at 100 ℃ and 99.2 % yield of DMF at 140 ℃. This work offers a new approach for the development of non-noble metal catalysts that are highly efficient, durable, and low-cost for the hydrodeoxygenation of renewable biomass into high-value compounds.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.