Efficient One-Pot Cellulosic Ethanol Production Over PdZn@Silicalite-1 Catalysts with Metal-Acid “Restricted Adjacency” Structures

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-16 DOI:10.1002/adfm.202421143
Yuandong Cui, Ning Wang, Guiyue Bi, Hongying Zhuo, Xin Shang, Tao Cai, Wei Jiang, Haoxi Ben, Xiaoli Yang, Yanqiang Huang
{"title":"Efficient One-Pot Cellulosic Ethanol Production Over PdZn@Silicalite-1 Catalysts with Metal-Acid “Restricted Adjacency” Structures","authors":"Yuandong Cui, Ning Wang, Guiyue Bi, Hongying Zhuo, Xin Shang, Tao Cai, Wei Jiang, Haoxi Ben, Xiaoli Yang, Yanqiang Huang","doi":"10.1002/adfm.202421143","DOIUrl":null,"url":null,"abstract":"Direct hydrogenolysis of cellulose to produce ethanol is a promising way to efficiently utilize biomass resources, contributing significantly to low-carbon energy development and greenhouse gas reduction. However, this process is challenging due to intricate cascading reactions. In this study, PdZn@S-1 catalysts featuring metal-acid “restricted adjacency” structures for direct cellulose conversion are developed. This unique structure allows acidic sites and metal nanoparticles to be in close proximity in a microscopic space, leading to changes in the electronic states of the metal sites, and an increase in the number of acidic sites. This configuration fosters synergistic and balanced interaction between the two types of sites. As a result, the PdZn<sub>0.5</sub>@S-1 catalyst demonstrates exceptional performance, achieving an ethanol yield of 69.2% at 245 °C and 4.5 MPa H<sub>2</sub> within 4 h. The remarkable catalytic activity and selectivity are attributed to the formation of Lewis acid sites through Pd<sup>δ+</sup>─O(H)─Si coordination, which facilitates the cleavage of C─C bonds, while the adjacent PdZn alloy provides an effective site for the hydrogenation of C─O bonds. This work introduces a novel approach by successfully integrating metal@zeolite catalysts into the catalytic conversion of biomass macromolecules, offering new insights for the direct utilization of biomass resources.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421143","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Direct hydrogenolysis of cellulose to produce ethanol is a promising way to efficiently utilize biomass resources, contributing significantly to low-carbon energy development and greenhouse gas reduction. However, this process is challenging due to intricate cascading reactions. In this study, PdZn@S-1 catalysts featuring metal-acid “restricted adjacency” structures for direct cellulose conversion are developed. This unique structure allows acidic sites and metal nanoparticles to be in close proximity in a microscopic space, leading to changes in the electronic states of the metal sites, and an increase in the number of acidic sites. This configuration fosters synergistic and balanced interaction between the two types of sites. As a result, the PdZn0.5@S-1 catalyst demonstrates exceptional performance, achieving an ethanol yield of 69.2% at 245 °C and 4.5 MPa H2 within 4 h. The remarkable catalytic activity and selectivity are attributed to the formation of Lewis acid sites through Pdδ+─O(H)─Si coordination, which facilitates the cleavage of C─C bonds, while the adjacent PdZn alloy provides an effective site for the hydrogenation of C─O bonds. This work introduces a novel approach by successfully integrating metal@zeolite catalysts into the catalytic conversion of biomass macromolecules, offering new insights for the direct utilization of biomass resources.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效一锅纤维素乙醇生产PdZn@Silicalite-1催化剂与金属-酸“限制邻接”结构
纤维素直接氢解制乙醇是有效利用生物质资源的一种有前景的方法,对低碳能源发展和减少温室气体排放具有重要意义。然而,由于复杂的级联反应,这一过程具有挑战性。在这项研究中,PdZn@S-1催化剂具有金属-酸“限制邻接”结构的纤维素直接转化。这种独特的结构允许酸性位点和金属纳米粒子在微观空间内接近,导致金属位点的电子状态发生变化,并增加酸性位点的数量。这种配置促进了两种类型站点之间的协同和平衡互动。结果表明,PdZn0.5@S-1催化剂表现出优异的性能,在245°C和4.5 MPa H2条件下,4 h内乙醇产率达到69.2%。优异的催化活性和选择性归功于通过Pdδ+─O(h)─Si配位形成的Lewis酸位点,促进了C─C键的裂解,而邻近的PdZn合金则为C─O键的加氢提供了有效的位点。本研究成功地将metal@zeolite催化剂整合到生物质大分子的催化转化中,为生物质资源的直接利用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Janus Asymmetric Cellulosic Triboelectric Materials Enabled by Gradient Nano‐Doping Strategy A Hydrogel Engineered with Semiconductive MnPSe3 Nanosheets as an Integrative Sonosensitizer/Fenton‐Like Catalyst/Nutrient for Melanoma Postoperative Care Temperature‐Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions Lattice Hydrogen Boosts CO Tolerance of Pd Anode Catalysts in High‐Temperature Proton Exchange Membrane Fuel Cells Fiber‐Reinforced Ultrathin Solid Polymer Electrolyte for Solid‐State Lithium‐Metal Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1