Changhong Linghu, Yangchengyi Liu, Xudong Yang, Zhou Chen, Jin Feng, Yiyuan Zhang, Yan Li, Zhao Zhao, Young-Jae Seo, Junwei Li, Haoyu Jiang, Jiangtao Su, Yin Fang, Yuhang Li, Xiufeng Wang, Yifan Wang, Huajian Gao, K. Jimmy Hsia
{"title":"Versatile adhesive skin enhances robotic interactions with the environment","authors":"Changhong Linghu, Yangchengyi Liu, Xudong Yang, Zhou Chen, Jin Feng, Yiyuan Zhang, Yan Li, Zhao Zhao, Young-Jae Seo, Junwei Li, Haoyu Jiang, Jiangtao Su, Yin Fang, Yuhang Li, Xiufeng Wang, Yifan Wang, Huajian Gao, K. Jimmy Hsia","doi":"10.1126/sciadv.adt4765","DOIUrl":null,"url":null,"abstract":"Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions. The adhesion strength of our adhesive skin can be changed from minimal (~1 kilopascal) for sensing and handling ultralightweight objects to ultrastrong (>1 megapascal) for picking up and lifting heavy objects. Our versatile adhesive skin is expected to greatly enhance the ability of intelligent robots to interact with their environment.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"14 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adt4765","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic skins endow robots with sensory functions but often lack the multifunctionality of natural skin, such as switchable adhesion. Current smart adhesives based on elastomers have limited adhesion tunability, which hinders their effective use for both carrying heavy loads and performing dexterous manipulations. Here, we report a versatile, one-size-fits-all robotic adhesive skin using shape memory polymers with tunable rubber-to-glass phase transitions. The adhesion strength of our adhesive skin can be changed from minimal (~1 kilopascal) for sensing and handling ultralightweight objects to ultrastrong (>1 megapascal) for picking up and lifting heavy objects. Our versatile adhesive skin is expected to greatly enhance the ability of intelligent robots to interact with their environment.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.