Neuron-inspired CsPbBr3/PDMS nanospheres for multi-dimensional sensing and interactive displays

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-01-17 DOI:10.1038/s41377-025-01742-z
Junhu Cai, Xiang Zhang, Yu Chen, Wenzong Lai, Yun Ye, Sheng Xu, Qun Yan, Tailiang Guo, Jiajun Luo, Enguo Chen
{"title":"Neuron-inspired CsPbBr3/PDMS nanospheres for multi-dimensional sensing and interactive displays","authors":"Junhu Cai, Xiang Zhang, Yu Chen, Wenzong Lai, Yun Ye, Sheng Xu, Qun Yan, Tailiang Guo, Jiajun Luo, Enguo Chen","doi":"10.1038/s41377-025-01742-z","DOIUrl":null,"url":null,"abstract":"<p>Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr<sub>3</sub>/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses. The carefully engineered polydimethylsiloxane (PDMS) shell enables the reversible activity of the core CsPbBr<sub>3</sub>, serving a dual role similar to dendrites in conveying and evaluating external stimuli with high sensitivity. Molecular dynamics analysis reveals that the PDMS shell with proper pore density enhances the conductivity in water and heat, imparting CsPbBr<sub>3</sub> with sensitive but reversible properties. By tailoring the crosslinking density of the PDMS shell, nanospheres can surprisingly show customized sensitivity and reversible responses to different level of stimuli, achieving over 95% accuracy in multi-dimensional and wide-range sensing. The regular pressure-sensitive property, discovered for the first time, is attributed to the regular morphology of the nanosphere, the inherent low rigidity of the PDMS shell, and the uniform distribution of the CsPbBr<sub>3</sub> core material in combination. This study breaks away from conventional design paradigms of perovskite core-shell materials by customizing the cross-linked density of the shell material. The reversible response mechanism of nanospheres with gradient shell density is deeply explored in response to environmental stimuli, which offers fresh insights into multi-dimensional sensing and interactive display applications.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"29 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01742-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multifunctional materials have attracted tremendous attention in intelligent and interactive devices. However, achieving multi-dimensional sensing capabilities with the same perovskite quantum dot (PQD) material is still in its infancy, with some considering it currently challenging and even unattainable. Drawing inspiration from neurons, a novel multifunctional CsPbBr3/PDMS nanosphere is devised to sense humidity, temperature, and pressure simultaneously with unique interactive responses. The carefully engineered polydimethylsiloxane (PDMS) shell enables the reversible activity of the core CsPbBr3, serving a dual role similar to dendrites in conveying and evaluating external stimuli with high sensitivity. Molecular dynamics analysis reveals that the PDMS shell with proper pore density enhances the conductivity in water and heat, imparting CsPbBr3 with sensitive but reversible properties. By tailoring the crosslinking density of the PDMS shell, nanospheres can surprisingly show customized sensitivity and reversible responses to different level of stimuli, achieving over 95% accuracy in multi-dimensional and wide-range sensing. The regular pressure-sensitive property, discovered for the first time, is attributed to the regular morphology of the nanosphere, the inherent low rigidity of the PDMS shell, and the uniform distribution of the CsPbBr3 core material in combination. This study breaks away from conventional design paradigms of perovskite core-shell materials by customizing the cross-linked density of the shell material. The reversible response mechanism of nanospheres with gradient shell density is deeply explored in response to environmental stimuli, which offers fresh insights into multi-dimensional sensing and interactive display applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经元启发CsPbBr3/PDMS纳米球用于多维传感和交互显示
多功能材料在智能和交互设备中引起了广泛的关注。然而,用同样的钙钛矿量子点(PQD)材料实现多维传感能力仍处于起步阶段,一些人认为它目前具有挑战性,甚至无法实现。从神经元中汲取灵感,设计了一种新型多功能CsPbBr3/PDMS纳米球,可以同时感知湿度、温度和压力,并具有独特的交互响应。精心设计的聚二甲基硅氧烷(PDMS)外壳使核心CsPbBr3具有可逆活性,在传递和高灵敏度评估外部刺激方面发挥类似树突的双重作用。分子动力学分析表明,适当孔隙密度的PDMS壳增强了CsPbBr3在水和热中的导电性,使CsPbBr3具有敏感但可逆的性能。通过调整PDMS外壳的交联密度,纳米球可以对不同水平的刺激表现出定制的灵敏度和可逆响应,在多维和宽范围传感中达到95%以上的精度。首次发现的规则压敏性能归因于纳米球的规则形貌,PDMS外壳固有的低刚性以及CsPbBr3核心材料的均匀分布。本研究通过定制壳材料的交联密度,打破了钙钛矿核壳材料的传统设计范式。深入探讨了具有梯度壳密度的纳米微球对环境刺激的可逆响应机制,为多维传感和交互显示应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Metasurface higher-order poincaré sphere polarization detection clock Advanced technologies in InGaN micro-LED fabrication to mitigate the sidewall effect Capillary condensation-driven growth of perovskite nanowire arrays for multi-functional photodetector Transparent OLED displays for selective bidirectional viewing using ZnO/Yb:Ag cathode with highly smooth and low-barrier surface Optical semantic communication through multimode fiber: from symbol transmission to sentiment analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1