Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt)

IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Mineralium Deposita Pub Date : 2025-01-17 DOI:10.1007/s00126-025-01348-w
Marta S. Codeço, Sarah A. Gleeson, Vitor Barrote, Daniel Harlov, Christof Kusebauch, Monika Koch-Müller, Jorge M. R. S. Relvas, Anja M. Schleicher, Christian Schmidt, Jessica A. Stammeier, Marcin D. Syczewski, Franziska D. H. Wilke
{"title":"Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt)","authors":"Marta S. Codeço, Sarah A. Gleeson, Vitor Barrote, Daniel Harlov, Christof Kusebauch, Monika Koch-Müller, Jorge M. R. S. Relvas, Anja M. Schleicher, Christian Schmidt, Jessica A. Stammeier, Marcin D. Syczewski, Franziska D. H. Wilke","doi":"10.1007/s00126-025-01348-w","DOIUrl":null,"url":null,"abstract":"<p>The Neves Corvo Cu-Zn-Pb(-Sn) deposit (Portugal) is one of the largest volcanogenic massive sulfide deposits (VMS) worldwide, hosted by Upper Devonian to Early Carboniferous rocks. Originally, it contained an early structurally controlled tin orebody (stockwork and massive cassiterite), which has now been mined out. In this study, we report the first occurrence of phosphate minerals (apatite, florencite, and xenotime) within the tin stockwork at Neves Corvo. We present a high-resolution multi-analytical study using petrographic, mineral chemistry, and whole-rock geochemical methods to understand the genesis of these phosphates and their implications for tin at the Neves Corvo deposit. Our results demonstrate that apatite forms coevally with cassiterite and has low trace element contents except for S, Sr, Y, and MREE (Middle Rare Earth Elements; 10–100 ppm) with a bell-shaped chondrite (C1) normalized REE pattern. We suggest that apatite likely formed as chlorapatite or oxyapatite that was subsequently metasomatized to fluorapatite with minor carbonate during hydrothermal alteration related to sulfide mineralization. The REE pattern of apatite, together with the presence of secondary phosphates (florencite and xenotime), indicates preferential scavenging of REE to form the latter phases due to the interaction with NaCl-rich and, to a minor extent, fluorine-rich fluids in an aluminum-saturated system. This study underscores how the analyses of primary and secondary phosphate minerals can help to track the evolution of the hydrothermal system and partially constrain the fluid composition and fluid-rock interaction processes. Therefore, the approaches outlined here are applicable to any hydrothermal ore-forming system where phosphate phases are formed.</p>","PeriodicalId":18682,"journal":{"name":"Mineralium Deposita","volume":"37 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineralium Deposita","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00126-025-01348-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Neves Corvo Cu-Zn-Pb(-Sn) deposit (Portugal) is one of the largest volcanogenic massive sulfide deposits (VMS) worldwide, hosted by Upper Devonian to Early Carboniferous rocks. Originally, it contained an early structurally controlled tin orebody (stockwork and massive cassiterite), which has now been mined out. In this study, we report the first occurrence of phosphate minerals (apatite, florencite, and xenotime) within the tin stockwork at Neves Corvo. We present a high-resolution multi-analytical study using petrographic, mineral chemistry, and whole-rock geochemical methods to understand the genesis of these phosphates and their implications for tin at the Neves Corvo deposit. Our results demonstrate that apatite forms coevally with cassiterite and has low trace element contents except for S, Sr, Y, and MREE (Middle Rare Earth Elements; 10–100 ppm) with a bell-shaped chondrite (C1) normalized REE pattern. We suggest that apatite likely formed as chlorapatite or oxyapatite that was subsequently metasomatized to fluorapatite with minor carbonate during hydrothermal alteration related to sulfide mineralization. The REE pattern of apatite, together with the presence of secondary phosphates (florencite and xenotime), indicates preferential scavenging of REE to form the latter phases due to the interaction with NaCl-rich and, to a minor extent, fluorine-rich fluids in an aluminum-saturated system. This study underscores how the analyses of primary and secondary phosphate minerals can help to track the evolution of the hydrothermal system and partially constrain the fluid composition and fluid-rock interaction processes. Therefore, the approaches outlined here are applicable to any hydrothermal ore-forming system where phosphate phases are formed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mineralium Deposita
Mineralium Deposita 地学-地球化学与地球物理
CiteScore
11.00
自引率
6.20%
发文量
61
审稿时长
6 months
期刊介绍: The journal Mineralium Deposita introduces new observations, principles, and interpretations from the field of economic geology, including nonmetallic mineral deposits, experimental and applied geochemistry, with emphasis on mineral deposits. It offers short and comprehensive articles, review papers, brief original papers, scientific discussions and news, as well as reports on meetings of importance to mineral research. The emphasis is on high-quality content and form for all articles and on international coverage of subject matter.
期刊最新文献
Textural, mineralogical, and geochemical evidence for apatite metasomatism and REE mobility within the Corvo orebody at the Neves Corvo Cu-Zn-Pb(-Sn) deposit (Iberian Pyrite Belt) The sulfur isotope evolution of the Duobuza Cu-Au porphyry deposit in the Duolong district, Central Tibet, China Ore and gangue mineral textures, fluid inclusions, mesoscopically structured quartz and pyrite, and their bearing on the genesis of hydrothermal breccias in the low-sulfidation Surnak gold deposit, SE Bulgaria Trace element distributions among Cu-(Fe)-sulfides from the Olympic Dam Cu-U-Au-Ag deposit, South Australia Polymetallic vein formation through fluid flashing at the Sunnyside intermediate-sulfidation epithermal deposit, Colorado, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1