{"title":"Robust In-Memory Computation With Bayesian Analog Error Mitigating Codes","authors":"Nilesh Kumar Jha;Huayan Guo;Vincent K. N. Lau","doi":"10.1109/TSP.2025.3530149","DOIUrl":null,"url":null,"abstract":"In-memory computation (IMC) is a promising technology for enabling low-latency and energy-efficient deep learning and artificial intelligence (AI) applications at edge devices. However, the IMC crossbar array, typically implemented using resistive random access memory (RRAM), faces hardware defects that pose a significant challenge to reliable computation. This paper presents a robust IMC scheme utilizing Bayesian neural network-accelerated analog codes. Our approach includes a new datapath design comprising a parity matrix generator and a low-complexity decoder module to facilitate analog codes for IMC. Moreover, we introduce a Gaussian mixture model-based error prior to capture impulsive error statistics and leverage variational Bayesian inference (VBI) techniques for training neural network weights. Extensive simulations confirm the effectiveness of our proposed solution compared to various state-of-the-art baseline schemes.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"534-548"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10843773/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In-memory computation (IMC) is a promising technology for enabling low-latency and energy-efficient deep learning and artificial intelligence (AI) applications at edge devices. However, the IMC crossbar array, typically implemented using resistive random access memory (RRAM), faces hardware defects that pose a significant challenge to reliable computation. This paper presents a robust IMC scheme utilizing Bayesian neural network-accelerated analog codes. Our approach includes a new datapath design comprising a parity matrix generator and a low-complexity decoder module to facilitate analog codes for IMC. Moreover, we introduce a Gaussian mixture model-based error prior to capture impulsive error statistics and leverage variational Bayesian inference (VBI) techniques for training neural network weights. Extensive simulations confirm the effectiveness of our proposed solution compared to various state-of-the-art baseline schemes.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.