Dynamical constraints on neural population activity

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2025-01-17 DOI:10.1038/s41593-024-01845-7
Emily R. Oby, Alan D. Degenhart, Erinn M. Grigsby, Asma Motiwala, Nicole T. McClain, Patrick J. Marino, Byron M. Yu, Aaron P. Batista
{"title":"Dynamical constraints on neural population activity","authors":"Emily R. Oby, Alan D. Degenhart, Erinn M. Grigsby, Asma Motiwala, Nicole T. McClain, Patrick J. Marino, Byron M. Yu, Aaron P. Batista","doi":"10.1038/s41593-024-01845-7","DOIUrl":null,"url":null,"abstract":"<p>The manner in which neural activity unfolds over time is thought to be central to sensory, motor and cognitive functions in the brain. Network models have long posited that the brain’s computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate. We leveraged a brain–computer interface to challenge monkeys to violate the naturally occurring time courses of neural population activity that we observed in the motor cortex. This included challenging animals to traverse the natural time course of neural activity in a time-reversed manner. Animals were unable to violate the natural time courses of neural activity when directly challenged to do so. These results provide empirical support for the view that activity time courses observed in the brain indeed reflect the underlying network-level computational mechanisms that they are believed to implement.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"23 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-024-01845-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The manner in which neural activity unfolds over time is thought to be central to sensory, motor and cognitive functions in the brain. Network models have long posited that the brain’s computations involve time courses of activity that are shaped by the underlying network. A prediction from this view is that the activity time courses should be difficult to violate. We leveraged a brain–computer interface to challenge monkeys to violate the naturally occurring time courses of neural population activity that we observed in the motor cortex. This included challenging animals to traverse the natural time course of neural activity in a time-reversed manner. Animals were unable to violate the natural time courses of neural activity when directly challenged to do so. These results provide empirical support for the view that activity time courses observed in the brain indeed reflect the underlying network-level computational mechanisms that they are believed to implement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经活动随时间展开的方式被认为是大脑感官、运动和认知功能的核心。长期以来,网络模型一直认为大脑的计算涉及由底层网络形成的活动时间进程。这种观点预示着,活动时间历程应该很难被违反。我们利用脑机接口挑战猴子违反我们在运动皮层观察到的自然发生的神经群活动时间进程。这包括挑战动物以时间逆转的方式穿越神经活动的自然时间历程。当动物直接受到挑战时,它们无法违背神经活动的自然时间轨迹。这些结果为以下观点提供了实证支持:在大脑中观察到的活动时间轨迹确实反映了潜在的网络级计算机制,而这些机制被认为是大脑活动时间轨迹的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
Mapping the cellular etiology of schizophrenia and complex brain phenotypes Neural populations are dynamic but constrained Propagation of neuronal micronuclei regulates microglial characteristics Dynamical constraints on neural population activity Neural mechanisms of relational learning and fast knowledge reassembly in plastic neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1