Immediate ultrasmall current-tunable anomalous Hall effect

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-01-17 DOI:10.1016/j.matt.2024.101940
Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang
{"title":"Immediate ultrasmall current-tunable anomalous Hall effect","authors":"Li Yang, Hao Wu, Fei Guo, Gaojie Zhang, Wenfeng Zhang, Haixin Chang","doi":"10.1016/j.matt.2024.101940","DOIUrl":null,"url":null,"abstract":"Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼10<sup>2</sup> A cm<sup>−2</sup>). The multivalued electrical tuning of anomalous Hall resistance (R<sub>AHE</sub>) (<span><math><mrow is=\"true\"><mfrac is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">R</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">A</mi><mi is=\"true\" mathvariant=\"bold-italic\">H</mi><mi is=\"true\" mathvariant=\"bold-italic\">E</mi></mrow></msub><mn is=\"true\" mathvariant=\"bold\">1</mn></mrow><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">R</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"bold-italic\">A</mi><mi is=\"true\" mathvariant=\"bold-italic\">H</mi><mi is=\"true\" mathvariant=\"bold-italic\">E</mi></mrow></msub><mn is=\"true\" mathvariant=\"bold\">2</mn></mrow></mfrac><mo is=\"true\">∗</mo><mn is=\"true\" mathvariant=\"bold\">100</mn><mo is=\"true\">%</mo></mrow></math></span>) is up to 584% and remains 126% at room temperature. The squared correlation between R<sub>AHE</sub> and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.","PeriodicalId":388,"journal":{"name":"Matter","volume":"120 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.101940","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical control of the anomalous Hall effect (AHE) provides an important gateway to reveal and regulate topological properties of spins. However, direct, immediate electrical tuning of the AHE in materials has been elusive, unfeasible, and rarely reported. Here, we demonstrate direct, immediate, nonlinear, electric current regulation of the AHE in a single, novel, van der Waals, room-temperature, ferromagnetic, ultrathin, two-dimensional (2D) crystal for intrinsic sensitivity of nodal electronic structures induced by 2D spin-orbit coupling (SOC) in a 2D quantum limit with an ultrasmall current (∼102 A cm−2). The multivalued electrical tuning of anomalous Hall resistance (RAHE) (RAHE1RAHE2100%) is up to 584% and remains 126% at room temperature. The squared correlation between RAHE and longitudinal resistance indicates an SOC-dominated Berry curvature-induced AHE. This immediate-current AHE with distinct dependence on the dimension, crystal layer, and electronic topology provides unique quantum platforms for probing the essence of the dimension and for low-power spintronics and brain-like quantum devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Immediate ultrasmall current-tunable anomalous Hall effect “Parallel+uniaxial” conjugated electrospinning for dual-function analogous-tricolor microfiber film with multicolor emission and magnetism Daily multi-segment capsule for time-tunable drug release toward enhanced polypharmacy adherence Efficient oral insulin delivery with sustained release by folate-conjugated metal-organic framework nanoparticles Long-span delivery of differentiable hybrid robots for restoration of neural connections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1