Human P2X4 receptor gating is modulated by a stable cytoplasmic cap and a unique allosteric pocket

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-17 DOI:10.1126/sciadv.adr3315
Haoyuan Shi, Ismayn A. Ditter, Adam C. Oken, Steven E. Mansoor
{"title":"Human P2X4 receptor gating is modulated by a stable cytoplasmic cap and a unique allosteric pocket","authors":"Haoyuan Shi, Ismayn A. Ditter, Adam C. Oken, Steven E. Mansoor","doi":"10.1126/sciadv.adr3315","DOIUrl":null,"url":null,"abstract":"P2X receptors (P2XRs) are adenosine 5′-triphosphate (ATP)–gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1–P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo–electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states. Because the apo closed and antagonist-bound inhibited state structures of this slow-desensitizing P2XR include an intact cytoplasmic cap while the ATP-bound desensitized state structure does not, the cytoplasmic cap is formed before agonist binding. Furthermore, structural and functional data suggest the cytoplasmic cap is stabilized by lipids to modulate desensitization, and P2X4 is modified by glycosylation and palmitoylation. Last, our antagonist-bound inhibited state structure reveals features specific to the allosteric ligand-binding pocket in human receptors that facilitates development of small-molecule modulators.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"30 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr3315","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

P2X receptors (P2XRs) are adenosine 5′-triphosphate (ATP)–gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1–P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo–electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states. Because the apo closed and antagonist-bound inhibited state structures of this slow-desensitizing P2XR include an intact cytoplasmic cap while the ATP-bound desensitized state structure does not, the cytoplasmic cap is formed before agonist binding. Furthermore, structural and functional data suggest the cytoplasmic cap is stabilized by lipids to modulate desensitization, and P2X4 is modified by glycosylation and palmitoylation. Last, our antagonist-bound inhibited state structure reveals features specific to the allosteric ligand-binding pocket in human receptors that facilitates development of small-molecule modulators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Inherent differential microbial assemblages and functions associated with corals exhibiting different thermal phenotypes Pellino 3 E3 ligase promotes starvation-induced autophagy to prevent hepatic steatosis Versatile adhesive skin enhances robotic interactions with the environment Morphogenesis of bacterial cables in polymeric environments Targeting uPAR with an antibody-drug conjugate suppresses tumor growth and reshapes the immune landscape in pancreatic cancer models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1