Multicomponent Synthesis of Alkyl BCP-Heteroaryls via Electron Donor–Acceptor Complex Photoactivation under Mild Conditions

IF 3.3 2区 化学 Q1 CHEMISTRY, ORGANIC Journal of Organic Chemistry Pub Date : 2025-01-17 DOI:10.1021/acs.joc.4c02941
Yanhe Li, Jun Xu, Yuxin Wang, Ruiyuan Xu, Yuxuan Zhao, Wanmei Li
{"title":"Multicomponent Synthesis of Alkyl BCP-Heteroaryls via Electron Donor–Acceptor Complex Photoactivation under Mild Conditions","authors":"Yanhe Li, Jun Xu, Yuxin Wang, Ruiyuan Xu, Yuxuan Zhao, Wanmei Li","doi":"10.1021/acs.joc.4c02941","DOIUrl":null,"url":null,"abstract":"In the vanguard of sustainable chemistry, the pursuit of efficient pathways for the synthesis of alkyl bicyclo[1.1.1]pentane-heteroaryls has captured the attention of the scientific vanguard. We herein report a groundbreaking and eco-conscious multicomponent coupling reaction that paves the way for the alkylation and heteroarylation of [1.1.1]propellane, a process uniquely enabled by the photochemical prowess of an electron donor–acceptor (EDA) complex. This method is distinguished by its minimalist yet powerful approach: devoid of transition metals, additives, and photosensitizers. Its universality is further exemplified by the seamless compatibility of a broad spectrum of alkyl halides and heteroarenes under standardized conditions, heralding a new era of synthetic versatility. The method’s practicality is underscored by its capacity for late-stage modification of pharmaceuticals, offering a transformative tool for the enhancement of existing drug molecules. Moreover, the facile derivatization of the synthesized products underscores the method’s adaptability and potential for diverse applications. Our mechanistic studies have elucidated the underlying radical-relay pathway, pinpointing the pivotal role of the EDA complex in initiating the transformation. This discovery not only enriches our fundamental understanding of the reaction but also opens avenues for strategic optimization.","PeriodicalId":57,"journal":{"name":"Journal of Organic Chemistry","volume":"6 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02941","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the vanguard of sustainable chemistry, the pursuit of efficient pathways for the synthesis of alkyl bicyclo[1.1.1]pentane-heteroaryls has captured the attention of the scientific vanguard. We herein report a groundbreaking and eco-conscious multicomponent coupling reaction that paves the way for the alkylation and heteroarylation of [1.1.1]propellane, a process uniquely enabled by the photochemical prowess of an electron donor–acceptor (EDA) complex. This method is distinguished by its minimalist yet powerful approach: devoid of transition metals, additives, and photosensitizers. Its universality is further exemplified by the seamless compatibility of a broad spectrum of alkyl halides and heteroarenes under standardized conditions, heralding a new era of synthetic versatility. The method’s practicality is underscored by its capacity for late-stage modification of pharmaceuticals, offering a transformative tool for the enhancement of existing drug molecules. Moreover, the facile derivatization of the synthesized products underscores the method’s adaptability and potential for diverse applications. Our mechanistic studies have elucidated the underlying radical-relay pathway, pinpointing the pivotal role of the EDA complex in initiating the transformation. This discovery not only enriches our fundamental understanding of the reaction but also opens avenues for strategic optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Organic Chemistry
Journal of Organic Chemistry 化学-有机化学
CiteScore
6.20
自引率
11.10%
发文量
1467
审稿时长
2 months
期刊介绍: Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.
期刊最新文献
Annulative Coupling of Sulfoxonium Ylides with Aldehydes and Naphthols or Coumarins: Easy Access to Fused Dihydrofurans Cascade Aza-Prins/Friedel–Crafts Reaction of Homocinnamyloxycarbamate and Aromatic Aldehydes Yielding Aromatic Ring-Annulated Hydrocyclopenta-1,2-oxazinane Multicomponent Synthesis of Alkyl BCP-Heteroaryls via Electron Donor–Acceptor Complex Photoactivation under Mild Conditions Computational Insights into “Lone Pair–Lone Pair Interaction-Controlled” Isomerization in the Asymmetric Total Syntheses of (+)-3-(Z)-Laureatin and (+)-3-(Z)-Isolaureatin Synthesis of Nonplanar Push–Pull Chromophores with Various Heterocyclic Moieties via [2 + 2] Cycloaddition-Retroelectrocyclization Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1