Mass spectra of full-heavy and double-heavy tetraquark states in the conventional quark model

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-01-17 DOI:10.1103/physrevd.111.014018
Qi Meng, Guang-Juan Wang, Makoto Oka
{"title":"Mass spectra of full-heavy and double-heavy tetraquark states in the conventional quark model","authors":"Qi Meng, Guang-Juan Wang, Makoto Oka","doi":"10.1103/physrevd.111.014018","DOIUrl":null,"url":null,"abstract":"A comprehensive study of the S</a:mi></a:math>-wave heavy tetraquark states with identical quarks and antiquarks, specifically <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>Q</c:mi><c:mi>Q</c:mi><c:msup><c:mover accent=\"true\"><c:mi>Q</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover><c:mo>′</c:mo></c:msup><c:msup><c:mover accent=\"true\"><c:mi>Q</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover><c:mo>′</c:mo></c:msup></c:math> (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>Q</i:mi><i:mo>,</i:mo><i:msup><i:mi>Q</i:mi><i:mo>′</i:mo></i:msup><i:mo>=</i:mo><i:mi>c</i:mi></i:math>, <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mi>b</k:mi></k:mrow></k:math>), <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>Q</m:mi><m:mi>Q</m:mi><m:mover accent=\"true\"><m:mi>s</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mover accent=\"true\"><m:mi>s</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mo>/</m:mo><m:mover accent=\"true\"><m:mi>Q</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mover accent=\"true\"><m:mi>Q</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mi>s</m:mi><m:mi>s</m:mi></m:math>, and <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>Q</w:mi><w:mi>Q</w:mi><w:mover accent=\"true\"><w:mi>q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mover accent=\"true\"><w:mi>q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mo>/</w:mo><w:mover accent=\"true\"><w:mi>Q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mover accent=\"true\"><w:mi>Q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mi>q</w:mi><w:mi>q</w:mi></w:math> (<gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mrow><gb:mi>q</gb:mi><gb:mo>=</gb:mo><gb:mi>u</gb:mi></gb:mrow></gb:math>, <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mrow><ib:mi>d</ib:mi></ib:mrow></ib:math>), are studied in a unified constituent quark model. This model contains the one-gluon exchange and confinement potentials. The latter is modeled as the sum of all two-body linear potentials. We employ the Gaussian expansion method to solve the full four-body Schrödinger equations, and search bound and resonant states using the complex-scaling method. We then identify 3 bound and 62 resonant states. The bound states are all <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:mi>Q</kb:mi><kb:mi>Q</kb:mi><kb:mover accent=\"true\"><kb:mi>q</kb:mi><kb:mo stretchy=\"false\">¯</kb:mo></kb:mover><kb:mover accent=\"true\"><kb:mi>q</kb:mi><kb:mo stretchy=\"false\">¯</kb:mo></kb:mover></kb:math> states with the isospin and spin-parity quantum numbers <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi>I</qb:mi><qb:mo stretchy=\"false\">(</qb:mo><qb:msup><qb:mi>J</qb:mi><qb:mi>P</qb:mi></qb:msup><qb:mo stretchy=\"false\">)</qb:mo><qb:mo>=</qb:mo><qb:mn>0</qb:mn><qb:mo stretchy=\"false\">(</qb:mo><qb:msup><qb:mn>1</qb:mn><qb:mo>+</qb:mo></qb:msup><qb:mo stretchy=\"false\">)</qb:mo></qb:math>: two bound <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>b</wb:mi><wb:mi>b</wb:mi><wb:mover accent=\"true\"><wb:mi>q</wb:mi><wb:mo stretchy=\"false\">¯</wb:mo></wb:mover><wb:mover accent=\"true\"><wb:mi>q</wb:mi><wb:mo stretchy=\"false\">¯</wb:mo></wb:mover></wb:math> states with the binding energies, 153 MeV and 4 MeV below the <cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cc:mi>B</cc:mi><cc:msup><cc:mi>B</cc:mi><cc:mo>*</cc:mo></cc:msup></cc:math> threshold, and a shallow <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:mi>c</ec:mi><ec:mi>c</ec:mi><ec:mover accent=\"true\"><ec:mi>q</ec:mi><ec:mo stretchy=\"false\">¯</ec:mo></ec:mover><ec:mover accent=\"true\"><ec:mi>q</ec:mi><ec:mo stretchy=\"false\">¯</ec:mo></ec:mover></ec:math> state at <kc:math xmlns:kc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kc:mo>−</kc:mo><kc:mn>15</kc:mn><kc:mtext> </kc:mtext><kc:mtext> </kc:mtext><kc:mi>MeV</kc:mi></kc:math> from the <mc:math xmlns:mc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mc:mi>D</mc:mi><mc:msup><mc:mi>D</mc:mi><mc:mo>*</mc:mo></mc:msup></mc:math> threshold. The deeper <oc:math xmlns:oc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><oc:mi>b</oc:mi><oc:mi>b</oc:mi><oc:mover accent=\"true\"><oc:mi>q</oc:mi><oc:mo stretchy=\"false\">¯</oc:mo></oc:mover><oc:mover accent=\"true\"><oc:mi>q</oc:mi><oc:mo stretchy=\"false\">¯</oc:mo></oc:mover></oc:math> bound state aligns with the lattice QCD predictions, while <uc:math xmlns:uc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><uc:mi>c</uc:mi><uc:mi>c</uc:mi><uc:mover accent=\"true\"><uc:mi>q</uc:mi><uc:mo stretchy=\"false\">¯</uc:mo></uc:mover><uc:mover accent=\"true\"><uc:mi>q</uc:mi><uc:mo stretchy=\"false\">¯</uc:mo></uc:mover></uc:math> bound state, still has a much larger binding energy than the recently observed T</ad:mi>c</ad:mi>c</ad:mi></ad:mrow>+</ad:mo></ad:msubsup></ad:math> by LHCb collaboration. No bound states are identified for the <cd:math xmlns:cd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cd:mi>Q</cd:mi><cd:mi>Q</cd:mi><cd:msup><cd:mover accent=\"true\"><cd:mi>Q</cd:mi><cd:mo stretchy=\"false\">¯</cd:mo></cd:mover><cd:mo>′</cd:mo></cd:msup><cd:msup><cd:mover accent=\"true\"><cd:mi>Q</cd:mi><cd:mo stretchy=\"false\">¯</cd:mo></cd:mover><cd:mo>′</cd:mo></cd:msup></cd:math>, <id:math xmlns: display=\"inline\"><id:mi>Q</id:mi><id:mi>Q</id:mi><id:mover accent=\"true\"><id:mi>s</id:mi><id:mo stretchy=\"false\">¯</id:mo></id:mover><id:mover accent=\"true\"><id:mi>s</id:mi><id:mo stretchy=\"false\">¯</id:mo></id:mover></id:math>, and <od:math xmlns:od=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><od:mi>Q</od:mi><od:mi>Q</od:mi><od:mover accent=\"true\"><od:mi>q</od:mi><od:mo stretchy=\"false\">¯</od:mo></od:mover><od:mover accent=\"true\"><od:mi>q</od:mi><od:mo stretchy=\"false\">¯</od:mo></od:mover></od:math> with <ud:math xmlns:ud=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ud:mi>I</ud:mi><ud:mo>=</ud:mo><ud:mn>1</ud:mn></ud:math>. Our analysis shows that the bound <wd:math xmlns:wd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wd:mi>Q</wd:mi><wd:mi>Q</wd:mi><wd:msup><wd:mover accent=\"true\"><wd:mi>Q</wd:mi><wd:mo stretchy=\"false\">¯</wd:mo></wd:mover><wd:mo>′</wd:mo></wd:msup><wd:msup><wd:mover accent=\"true\"><wd:mi>Q</wd:mi><wd:mo stretchy=\"false\">¯</wd:mo></wd:mover><wd:mo>′</wd:mo></wd:msup></wd:math> states are more probable with a larger mass ratio, <ce:math xmlns:ce=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ce:msub><ce:mi>m</ce:mi><ce:mi>Q</ce:mi></ce:msub><ce:mo>/</ce:mo><ce:msub><ce:mi>m</ce:mi><ce:msup><ce:mi>Q</ce:mi><ce:mo>′</ce:mo></ce:msup></ce:msub></ce:math>. Experimental investigation for these states is desired, which will enrich our understanding of hadron spectroscopy and probe insights into the confinement mechanisms within tetraquarks. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"45 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.014018","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive study of the S-wave heavy tetraquark states with identical quarks and antiquarks, specifically QQQ¯Q¯ (Q,Q=c, b), QQs¯s¯/Q¯Q¯ss, and QQq¯q¯/Q¯Q¯qq (q=u, d), are studied in a unified constituent quark model. This model contains the one-gluon exchange and confinement potentials. The latter is modeled as the sum of all two-body linear potentials. We employ the Gaussian expansion method to solve the full four-body Schrödinger equations, and search bound and resonant states using the complex-scaling method. We then identify 3 bound and 62 resonant states. The bound states are all QQq¯q¯ states with the isospin and spin-parity quantum numbers I(JP)=0(1+): two bound bbq¯q¯ states with the binding energies, 153 MeV and 4 MeV below the BB* threshold, and a shallow ccq¯q¯ state at 15 MeV from the DD* threshold. The deeper bbq¯q¯ bound state aligns with the lattice QCD predictions, while ccq¯q¯ bound state, still has a much larger binding energy than the recently observed Tcc+ by LHCb collaboration. No bound states are identified for the QQQ¯Q¯, QQs¯s¯, and QQq¯q¯ with I=1. Our analysis shows that the bound QQQ¯Q¯ states are more probable with a larger mass ratio, mQ/mQ. Experimental investigation for these states is desired, which will enrich our understanding of hadron spectroscopy and probe insights into the confinement mechanisms within tetraquarks. Published by the American Physical Society 2025
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
传统夸克模型中全重和双重四夸克态的质谱
在统一组成夸克模型中,全面研究了具有相同夸克和反夸克的s波重四夸克态QQQ¯‘ Q¯’ (Q,Q ' =c, b)、QQs¯s¯/Q¯Q¯ss和QQQ¯Q¯/Q¯Q¯qq (Q =u, d)。该模型包含单胶子交换势和约束势。后者被建模为所有两体线性势的和。我们采用高斯展开法求解完整的四体Schrödinger方程,并使用复标度法搜索界态和共振态。然后我们确定了3个束缚态和62个共振态。束缚态都是同位旋和自旋宇称量子数I(JP)=0(1+)的QQq¯q¯态:两个束缚态bbq¯q¯,结合能分别为153 MeV和4 MeV,低于BB*阈值,以及一个较浅的ccq¯q¯态,距离DD*阈值为- 15 MeV。较深的bbq¯q¯束缚态与晶格QCD预测一致,而ccq¯q¯束缚态仍然具有比最近由LHCb合作观察到的Tcc+大得多的结合能。当I=1时,QQQ¯‘ Q¯’、QQs¯s¯和QQQ¯Q¯没有边界状态。我们的分析表明,随着质量比(mQ/mQ)的增大,束缚态QQQ¯‘ Q¯’更有可能存在。对这些态进行实验研究将丰富我们对强子光谱学的理解,并探索四夸克内部的约束机制。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Quantum description of wave dark matter Thermodynamics of stealth black holes Hadron-quark hybrid model, modular transformation, and Roberge-Weiss transition String scattering and evolution of a Ryu-Takayanagi surface Analytical structure of kt clustering to any order
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1