{"title":"Mass spectra of full-heavy and double-heavy tetraquark states in the conventional quark model","authors":"Qi Meng, Guang-Juan Wang, Makoto Oka","doi":"10.1103/physrevd.111.014018","DOIUrl":null,"url":null,"abstract":"A comprehensive study of the S</a:mi></a:math>-wave heavy tetraquark states with identical quarks and antiquarks, specifically <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>Q</c:mi><c:mi>Q</c:mi><c:msup><c:mover accent=\"true\"><c:mi>Q</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover><c:mo>′</c:mo></c:msup><c:msup><c:mover accent=\"true\"><c:mi>Q</c:mi><c:mo stretchy=\"false\">¯</c:mo></c:mover><c:mo>′</c:mo></c:msup></c:math> (<i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>Q</i:mi><i:mo>,</i:mo><i:msup><i:mi>Q</i:mi><i:mo>′</i:mo></i:msup><i:mo>=</i:mo><i:mi>c</i:mi></i:math>, <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mi>b</k:mi></k:mrow></k:math>), <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>Q</m:mi><m:mi>Q</m:mi><m:mover accent=\"true\"><m:mi>s</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mover accent=\"true\"><m:mi>s</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mo>/</m:mo><m:mover accent=\"true\"><m:mi>Q</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mover accent=\"true\"><m:mi>Q</m:mi><m:mo stretchy=\"false\">¯</m:mo></m:mover><m:mi>s</m:mi><m:mi>s</m:mi></m:math>, and <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>Q</w:mi><w:mi>Q</w:mi><w:mover accent=\"true\"><w:mi>q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mover accent=\"true\"><w:mi>q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mo>/</w:mo><w:mover accent=\"true\"><w:mi>Q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mover accent=\"true\"><w:mi>Q</w:mi><w:mo stretchy=\"false\">¯</w:mo></w:mover><w:mi>q</w:mi><w:mi>q</w:mi></w:math> (<gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mrow><gb:mi>q</gb:mi><gb:mo>=</gb:mo><gb:mi>u</gb:mi></gb:mrow></gb:math>, <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mrow><ib:mi>d</ib:mi></ib:mrow></ib:math>), are studied in a unified constituent quark model. This model contains the one-gluon exchange and confinement potentials. The latter is modeled as the sum of all two-body linear potentials. We employ the Gaussian expansion method to solve the full four-body Schrödinger equations, and search bound and resonant states using the complex-scaling method. We then identify 3 bound and 62 resonant states. The bound states are all <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:mi>Q</kb:mi><kb:mi>Q</kb:mi><kb:mover accent=\"true\"><kb:mi>q</kb:mi><kb:mo stretchy=\"false\">¯</kb:mo></kb:mover><kb:mover accent=\"true\"><kb:mi>q</kb:mi><kb:mo stretchy=\"false\">¯</kb:mo></kb:mover></kb:math> states with the isospin and spin-parity quantum numbers <qb:math xmlns:qb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><qb:mi>I</qb:mi><qb:mo stretchy=\"false\">(</qb:mo><qb:msup><qb:mi>J</qb:mi><qb:mi>P</qb:mi></qb:msup><qb:mo stretchy=\"false\">)</qb:mo><qb:mo>=</qb:mo><qb:mn>0</qb:mn><qb:mo stretchy=\"false\">(</qb:mo><qb:msup><qb:mn>1</qb:mn><qb:mo>+</qb:mo></qb:msup><qb:mo stretchy=\"false\">)</qb:mo></qb:math>: two bound <wb:math xmlns:wb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wb:mi>b</wb:mi><wb:mi>b</wb:mi><wb:mover accent=\"true\"><wb:mi>q</wb:mi><wb:mo stretchy=\"false\">¯</wb:mo></wb:mover><wb:mover accent=\"true\"><wb:mi>q</wb:mi><wb:mo stretchy=\"false\">¯</wb:mo></wb:mover></wb:math> states with the binding energies, 153 MeV and 4 MeV below the <cc:math xmlns:cc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cc:mi>B</cc:mi><cc:msup><cc:mi>B</cc:mi><cc:mo>*</cc:mo></cc:msup></cc:math> threshold, and a shallow <ec:math xmlns:ec=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ec:mi>c</ec:mi><ec:mi>c</ec:mi><ec:mover accent=\"true\"><ec:mi>q</ec:mi><ec:mo stretchy=\"false\">¯</ec:mo></ec:mover><ec:mover accent=\"true\"><ec:mi>q</ec:mi><ec:mo stretchy=\"false\">¯</ec:mo></ec:mover></ec:math> state at <kc:math xmlns:kc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kc:mo>−</kc:mo><kc:mn>15</kc:mn><kc:mtext> </kc:mtext><kc:mtext> </kc:mtext><kc:mi>MeV</kc:mi></kc:math> from the <mc:math xmlns:mc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mc:mi>D</mc:mi><mc:msup><mc:mi>D</mc:mi><mc:mo>*</mc:mo></mc:msup></mc:math> threshold. The deeper <oc:math xmlns:oc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><oc:mi>b</oc:mi><oc:mi>b</oc:mi><oc:mover accent=\"true\"><oc:mi>q</oc:mi><oc:mo stretchy=\"false\">¯</oc:mo></oc:mover><oc:mover accent=\"true\"><oc:mi>q</oc:mi><oc:mo stretchy=\"false\">¯</oc:mo></oc:mover></oc:math> bound state aligns with the lattice QCD predictions, while <uc:math xmlns:uc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><uc:mi>c</uc:mi><uc:mi>c</uc:mi><uc:mover accent=\"true\"><uc:mi>q</uc:mi><uc:mo stretchy=\"false\">¯</uc:mo></uc:mover><uc:mover accent=\"true\"><uc:mi>q</uc:mi><uc:mo stretchy=\"false\">¯</uc:mo></uc:mover></uc:math> bound state, still has a much larger binding energy than the recently observed T</ad:mi>c</ad:mi>c</ad:mi></ad:mrow>+</ad:mo></ad:msubsup></ad:math> by LHCb collaboration. No bound states are identified for the <cd:math xmlns:cd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cd:mi>Q</cd:mi><cd:mi>Q</cd:mi><cd:msup><cd:mover accent=\"true\"><cd:mi>Q</cd:mi><cd:mo stretchy=\"false\">¯</cd:mo></cd:mover><cd:mo>′</cd:mo></cd:msup><cd:msup><cd:mover accent=\"true\"><cd:mi>Q</cd:mi><cd:mo stretchy=\"false\">¯</cd:mo></cd:mover><cd:mo>′</cd:mo></cd:msup></cd:math>, <id:math xmlns: display=\"inline\"><id:mi>Q</id:mi><id:mi>Q</id:mi><id:mover accent=\"true\"><id:mi>s</id:mi><id:mo stretchy=\"false\">¯</id:mo></id:mover><id:mover accent=\"true\"><id:mi>s</id:mi><id:mo stretchy=\"false\">¯</id:mo></id:mover></id:math>, and <od:math xmlns:od=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><od:mi>Q</od:mi><od:mi>Q</od:mi><od:mover accent=\"true\"><od:mi>q</od:mi><od:mo stretchy=\"false\">¯</od:mo></od:mover><od:mover accent=\"true\"><od:mi>q</od:mi><od:mo stretchy=\"false\">¯</od:mo></od:mover></od:math> with <ud:math xmlns:ud=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ud:mi>I</ud:mi><ud:mo>=</ud:mo><ud:mn>1</ud:mn></ud:math>. Our analysis shows that the bound <wd:math xmlns:wd=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><wd:mi>Q</wd:mi><wd:mi>Q</wd:mi><wd:msup><wd:mover accent=\"true\"><wd:mi>Q</wd:mi><wd:mo stretchy=\"false\">¯</wd:mo></wd:mover><wd:mo>′</wd:mo></wd:msup><wd:msup><wd:mover accent=\"true\"><wd:mi>Q</wd:mi><wd:mo stretchy=\"false\">¯</wd:mo></wd:mover><wd:mo>′</wd:mo></wd:msup></wd:math> states are more probable with a larger mass ratio, <ce:math xmlns:ce=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ce:msub><ce:mi>m</ce:mi><ce:mi>Q</ce:mi></ce:msub><ce:mo>/</ce:mo><ce:msub><ce:mi>m</ce:mi><ce:msup><ce:mi>Q</ce:mi><ce:mo>′</ce:mo></ce:msup></ce:msub></ce:math>. Experimental investigation for these states is desired, which will enrich our understanding of hadron spectroscopy and probe insights into the confinement mechanisms within tetraquarks. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"45 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.014018","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
A comprehensive study of the S-wave heavy tetraquark states with identical quarks and antiquarks, specifically QQQ¯′Q¯′ (Q,Q′=c, b), QQs¯s¯/Q¯Q¯ss, and QQq¯q¯/Q¯Q¯qq (q=u, d), are studied in a unified constituent quark model. This model contains the one-gluon exchange and confinement potentials. The latter is modeled as the sum of all two-body linear potentials. We employ the Gaussian expansion method to solve the full four-body Schrödinger equations, and search bound and resonant states using the complex-scaling method. We then identify 3 bound and 62 resonant states. The bound states are all QQq¯q¯ states with the isospin and spin-parity quantum numbers I(JP)=0(1+): two bound bbq¯q¯ states with the binding energies, 153 MeV and 4 MeV below the BB* threshold, and a shallow ccq¯q¯ state at −15MeV from the DD* threshold. The deeper bbq¯q¯ bound state aligns with the lattice QCD predictions, while ccq¯q¯ bound state, still has a much larger binding energy than the recently observed Tcc+ by LHCb collaboration. No bound states are identified for the QQQ¯′Q¯′, QQs¯s¯, and QQq¯q¯ with I=1. Our analysis shows that the bound QQQ¯′Q¯′ states are more probable with a larger mass ratio, mQ/mQ′. Experimental investigation for these states is desired, which will enrich our understanding of hadron spectroscopy and probe insights into the confinement mechanisms within tetraquarks. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.