High-Speed and Broadband n-Si/p-Se0.3Te0.7/ITO Heterojunction Photodetector

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2025-01-17 DOI:10.1002/lpor.202402069
Xiutao Yang, Jun Gou, Hang Yu, Lixin Liu, Chunyu Li, Laijiang Wei, Yuchao Wei, ZeXu Wang, Meiyu He, Xin Zhang, Guanggen Zeng, Jiayue Han, He Yu, Zhiming Wu, Yadong Jiang, Jun Wang
{"title":"High-Speed and Broadband n-Si/p-Se0.3Te0.7/ITO Heterojunction Photodetector","authors":"Xiutao Yang, Jun Gou, Hang Yu, Lixin Liu, Chunyu Li, Laijiang Wei, Yuchao Wei, ZeXu Wang, Meiyu He, Xin Zhang, Guanggen Zeng, Jiayue Han, He Yu, Zhiming Wu, Yadong Jiang, Jun Wang","doi":"10.1002/lpor.202402069","DOIUrl":null,"url":null,"abstract":"The prevailing short-wavelength infrared (SWIR) photodetectors (PDs) based on III-V materials face challenges in heteroepitaxial material growth and device fabrication which adds cost and complexity. SeTe alloy is a potential candidate for SWIR PDs due to its low-cost growth and adjustable bandgap. However, the performance of SeTe-based PDs is currently hindered by the narrow depletion region and high dark current. Herein, large-scale, high-quality Se<sub>0.3</sub>Te<sub>0.7</sub> thin film is fabricated through a CMOS-compatible magnetron sputtering method followed by a low-temperature annealing process. A Si/Se<sub>0.3</sub>Te<sub>0.7</sub>/ITO vertical heterostructure is constructed with enhanced performances induced by an internal photoemission effect of top Schottky diode, which significantly increases carriers injected into Se<sub>0.3</sub>Te<sub>0.7</sub> and transported by Si/Se<sub>0.3</sub>Te<sub>0.7</sub> heterojunction. The PD shows superior broadband photoelectric properties with a 10000% improved responsivity at 1310 and 1550 nm, and a response time of ≈20 µs over a wide spectral range which represents a 100-fold reduction compared to traditional devices in the absence of hot holes trapping mechanism. This pioneering research provides fresh avenues for significantly improving the optoelectronic performance of analogous devices with narrow depletion regions in photosensitive materials and showcases potential applications in Si-based broadband detection and imaging systems with high sensitivity and high speed at room temperature.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"45 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402069","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The prevailing short-wavelength infrared (SWIR) photodetectors (PDs) based on III-V materials face challenges in heteroepitaxial material growth and device fabrication which adds cost and complexity. SeTe alloy is a potential candidate for SWIR PDs due to its low-cost growth and adjustable bandgap. However, the performance of SeTe-based PDs is currently hindered by the narrow depletion region and high dark current. Herein, large-scale, high-quality Se0.3Te0.7 thin film is fabricated through a CMOS-compatible magnetron sputtering method followed by a low-temperature annealing process. A Si/Se0.3Te0.7/ITO vertical heterostructure is constructed with enhanced performances induced by an internal photoemission effect of top Schottky diode, which significantly increases carriers injected into Se0.3Te0.7 and transported by Si/Se0.3Te0.7 heterojunction. The PD shows superior broadband photoelectric properties with a 10000% improved responsivity at 1310 and 1550 nm, and a response time of ≈20 µs over a wide spectral range which represents a 100-fold reduction compared to traditional devices in the absence of hot holes trapping mechanism. This pioneering research provides fresh avenues for significantly improving the optoelectronic performance of analogous devices with narrow depletion regions in photosensitive materials and showcases potential applications in Si-based broadband detection and imaging systems with high sensitivity and high speed at room temperature.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速宽带n-Si/p-Se0.3Te0.7/ITO异质结光电探测器
目前流行的基于III-V材料的短波红外光电探测器(SWIR)面临着异质外延材料生长和器件制造的挑战,这增加了成本和复杂性。SeTe合金由于其低成本生长和可调带隙而成为SWIR pd的潜在候选材料。然而,目前基于sete的pd的性能受到窄耗尽区和高暗电流的阻碍。本文采用兼容cmos的磁控溅射方法和低温退火工艺制备了大规模、高质量的Se0.3Te0.7薄膜。利用顶部肖特基二极管的内部光致发光效应,构建了Si/Se0.3Te0.7/ITO垂直异质结构,使注入Se0.3Te0.7并通过Si/Se0.3Te0.7异质结输运的载流子显著增加。该器件在1310和1550 nm处的响应率提高了10000%,在宽光谱范围内的响应时间约为20µs,与传统器件相比,在没有热孔捕获机制的情况下,响应时间降低了100倍。这项开创性的研究为显着提高光敏材料中具有窄耗尽区的类似器件的光电性能提供了新的途径,并展示了在室温下具有高灵敏度和高速的si基宽带检测和成像系统中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Component/Stimulus-Dependent Multi-Exciton Emission in Zr(IV)-Based Organic Metal Halides Triggered by Supramolecular Assembly and Antimony Doping Single-Shot on-Chip Diffractive Speckle Spectrometer with High Spectral Channel Density Maximized Enhancement of Polarized and Unpolarized Emissions via Critical Coupling in Brillouin Zone Folding Metasurfaces MTiTaO6: Cr3+ (M = Al3+, Ga3+, Sc3+) Phosphors with Ultra‐Broadband Excitation Spectra and Enhanced Near‐Infrared Emission for Solar Cells Realization of Chiral Whispering Gallery Mode Cavities Enabled by Photonic Chern Insulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1