Danyi Weng, Cheng Ling, Yang Gao, Guanghao Rui, Li Fan, Qiannan Cui, Chunxiang Xu, Bing Gu
{"title":"Spatially Asymmetric Optical Propagation and All-Optical Switching Based on Spatial Self-Phase Modulation of Semimetal MoP Microparticles","authors":"Danyi Weng, Cheng Ling, Yang Gao, Guanghao Rui, Li Fan, Qiannan Cui, Chunxiang Xu, Bing Gu","doi":"10.1002/lpor.202401587","DOIUrl":null,"url":null,"abstract":"Molybdenum phosphide (MoP) has excellent catalytic activity in hydrogen evolution reactions, but research on its nonlinear optical properties is just beginning. In this work, the spatial self-phase modulation (SSPM) phenomena of semimetal MoP spherical microparticles are investigated, their applications in spatially asymmetric optical propagation and all-optical switching are developed. The effective nonlinear refractive index <i>n</i><sub>2</sub> of MoP microparticles and the ring formation time <i>τ<sub>F</sub></i> of SSPM are measured to be about 10<sup>−5</sup> cm<sup>2</sup> W<sup>−1</sup> and 0.4 s, respectively. The SSPM experimental results after the sample placed for over two months indicate that MoP microparticles have long-term stability and resistance to photodegradation. The physical origin of the interaction between light and MoP microparticles to form SSPM is dominated by laser-induced hole coherence and a small amount of thermal effect. By utilizing the superior optical nonlinearity of MoP microparticles, the spatially asymmetric optical propagation of MoP/violet phosphorus (VP) cascaded samples and the all-optical switching performance of MoP microparticles are demonstrated, respectively. These results deepen the understanding of the optical nonlinear mechanism of hole micromaterials and are beneficial for the development of SSPM based on topological semimetal micro/nano-materials in passive nonlinear photonic devices, such as all-optical diodes, optical isolators, optical logic gates, etc.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"96 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401587","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Molybdenum phosphide (MoP) has excellent catalytic activity in hydrogen evolution reactions, but research on its nonlinear optical properties is just beginning. In this work, the spatial self-phase modulation (SSPM) phenomena of semimetal MoP spherical microparticles are investigated, their applications in spatially asymmetric optical propagation and all-optical switching are developed. The effective nonlinear refractive index n2 of MoP microparticles and the ring formation time τF of SSPM are measured to be about 10−5 cm2 W−1 and 0.4 s, respectively. The SSPM experimental results after the sample placed for over two months indicate that MoP microparticles have long-term stability and resistance to photodegradation. The physical origin of the interaction between light and MoP microparticles to form SSPM is dominated by laser-induced hole coherence and a small amount of thermal effect. By utilizing the superior optical nonlinearity of MoP microparticles, the spatially asymmetric optical propagation of MoP/violet phosphorus (VP) cascaded samples and the all-optical switching performance of MoP microparticles are demonstrated, respectively. These results deepen the understanding of the optical nonlinear mechanism of hole micromaterials and are beneficial for the development of SSPM based on topological semimetal micro/nano-materials in passive nonlinear photonic devices, such as all-optical diodes, optical isolators, optical logic gates, etc.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.