Yizhen Jiang, Yutong Wang, Feijing Su, Yaqin Hou, Wen Liao, Baichuan Li, Wuyu Mao
{"title":"Insights into NEK2 inhibitors as antitumor agents: From mechanisms to potential therapeutics","authors":"Yizhen Jiang, Yutong Wang, Feijing Su, Yaqin Hou, Wen Liao, Baichuan Li, Wuyu Mao","doi":"10.1016/j.ejmech.2025.117287","DOIUrl":null,"url":null,"abstract":"NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"27 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117287","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
NEK2, a serine/threonine protein kinase, is integral to mitotic events such as centrosome duplication and separation, microtubule stabilization, spindle assembly checkpoint, and kinetochore attachment. However, NEK2 overexpression leads to centrosome amplification and chromosomal instability, which are significantly associated with various malignancies, including liver, breast, and non-small cell lung cancer. This overexpression could facilitate tumor development and confer resistance to therapy by promoting aberrant cell division and centrosome amplification. Consequently, inhibiting NEK2 is considered as a promising strategy for oncological therapy. To date, no small molecule NEK2-specific inhibitors have advanced into clinical trials, highlighting the necessity for optimized design and the deployment of innovative technologies. In this review, we will provide a comprehensive summary of the chemical structure, biological functions, and disease associations of NEK2, focusing on the existing NEK2 small molecule inhibitors, especially their structure-activity relationships, limitations, and research strategies. Our objective is to provide valuable insights for the future development of NEK2 inhibitors and analysis of challenges faced in translating these findings into clinical applications.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.