In-situ validation of embedded physics-based calibration in low-cost particulate matter sensor for urban air quality monitoring

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES Urban Climate Pub Date : 2025-01-16 DOI:10.1016/j.uclim.2025.102289
Zikang Feng, Lina Zheng, Bilin Ren
{"title":"In-situ validation of embedded physics-based calibration in low-cost particulate matter sensor for urban air quality monitoring","authors":"Zikang Feng, Lina Zheng, Bilin Ren","doi":"10.1016/j.uclim.2025.102289","DOIUrl":null,"url":null,"abstract":"Low-cost particle sensors enable dense, geospatially distributed networks that enhance the spatial and temporal resolution of urban air quality monitoring. However, field interference in complex urban systems challenges the reliability of sensor data. Robust evaluation and calibration are essential to address this issue. In this study, a low-cost sensor system was deployed near standard monitoring stations from March 1 to May 30, 2024, recording PM<ce:inf loc=\"post\">2.5</ce:inf> concentration, PM<ce:inf loc=\"post\">10</ce:inf> concentration, particle counts in six different size channels, and ambient temperature and humidity. The results revealed systematic overestimation and interactions with environmental factors in the sensor data. To address these challenges, a physics-based calibration model, leveraging sensor-reported particle size information, was developed and compared with traditional empirical and machine learning models. These calibration models were embedded into the sensor system, followed by a second field campaign from June 1 to 30. While the machine learning model achieved the best performance during the first campaign (R<ce:sup loc=\"post\">2</ce:sup> &gt; 0.90, RMSE &lt;10 μg/m<ce:sup loc=\"post\">3</ce:sup> for PM<ce:inf loc=\"post\">2.5</ce:inf> and PM<ce:inf loc=\"post\">10</ce:inf>), its generalization ability was limited. The physics-based model, however, excelled on a new dataset from the second campaign, demonstrating robust performance and strong generalization across urban conditions. These findings highlight the potential of the physics-based calibration model to improve the reliability and sustainability of urban air quality monitoring by integrating it into the embedded systems of low-cost sensors. This approach offers enhanced stability and applicability in complex urban environments, providing a more effective calibration method for urban environmental systems.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"45 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2025.102289","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Low-cost particle sensors enable dense, geospatially distributed networks that enhance the spatial and temporal resolution of urban air quality monitoring. However, field interference in complex urban systems challenges the reliability of sensor data. Robust evaluation and calibration are essential to address this issue. In this study, a low-cost sensor system was deployed near standard monitoring stations from March 1 to May 30, 2024, recording PM2.5 concentration, PM10 concentration, particle counts in six different size channels, and ambient temperature and humidity. The results revealed systematic overestimation and interactions with environmental factors in the sensor data. To address these challenges, a physics-based calibration model, leveraging sensor-reported particle size information, was developed and compared with traditional empirical and machine learning models. These calibration models were embedded into the sensor system, followed by a second field campaign from June 1 to 30. While the machine learning model achieved the best performance during the first campaign (R2 > 0.90, RMSE <10 μg/m3 for PM2.5 and PM10), its generalization ability was limited. The physics-based model, however, excelled on a new dataset from the second campaign, demonstrating robust performance and strong generalization across urban conditions. These findings highlight the potential of the physics-based calibration model to improve the reliability and sustainability of urban air quality monitoring by integrating it into the embedded systems of low-cost sensors. This approach offers enhanced stability and applicability in complex urban environments, providing a more effective calibration method for urban environmental systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
期刊最新文献
"It is getting too hot lately": Urban households' knowledge, experiences and governance of extreme heat events in Accra, Ghana Urban stormwater resilience: Global insights and strategies for climate adaptation In-situ validation of embedded physics-based calibration in low-cost particulate matter sensor for urban air quality monitoring Estimation of space heating CO2 emissions based only on CO2 fluxes observations Assessment of hydrological behavioural changes of Noyyal watershed in Coimbatore district, India by using SWAT model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1