Optimized machine learning approaches to combine surface-enhanced Raman scattering and infrared data for trace detection of xylazine in illicit opioids†

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-01-17 DOI:10.1039/D4AN01496K
Rebecca R. Martens, Lea Gozdzialski, Ella Newman, Chris Gill, Bruce Wallace and Dennis K. Hore
{"title":"Optimized machine learning approaches to combine surface-enhanced Raman scattering and infrared data for trace detection of xylazine in illicit opioids†","authors":"Rebecca R. Martens, Lea Gozdzialski, Ella Newman, Chris Gill, Bruce Wallace and Dennis K. Hore","doi":"10.1039/D4AN01496K","DOIUrl":null,"url":null,"abstract":"<p >Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies—hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from both models)—to enhance the predictive accuracy for xylazine detection in illicit opioid samples. Three chemometric approaches—random forest, support vector machine, and <em>k</em>-nearest neighbor algorithms—were employed and optimized using a 5-fold cross-validation grid search for all fusion strategies. Validation results identified the random forest classifier as the optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and 96% for high-level) and specificity (88% for hybrid, mid-level, and high-level). The enhanced performance of the high-level fusion approach (F1 score of 92%) is demonstrated, effectively leveraging the surface-enhanced Raman data with a 90% voting weight, without compromising prediction accuracy (92%) when combined with infrared spectral data. This highlights the viability of a multi-instrument approach using data fusion and random forest classification to improve the detection of various components in complex opioid samples in a point-of-care setting.</p>","PeriodicalId":63,"journal":{"name":"Analyst","volume":" 4","pages":" 700-711"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/an/d4an01496k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/an/d4an01496k","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Infrared absorption spectroscopy and surface-enhanced Raman spectroscopy were integrated into three data fusion strategies—hybrid (concatenated spectra), mid-level (extracted features from both datasets) and high-level (fusion of predictions from both models)—to enhance the predictive accuracy for xylazine detection in illicit opioid samples. Three chemometric approaches—random forest, support vector machine, and k-nearest neighbor algorithms—were employed and optimized using a 5-fold cross-validation grid search for all fusion strategies. Validation results identified the random forest classifier as the optimal model for all fusion strategies, achieving high sensitivity (88% for hybrid, 92% for mid-level, and 96% for high-level) and specificity (88% for hybrid, mid-level, and high-level). The enhanced performance of the high-level fusion approach (F1 score of 92%) is demonstrated, effectively leveraging the surface-enhanced Raman data with a 90% voting weight, without compromising prediction accuracy (92%) when combined with infrared spectral data. This highlights the viability of a multi-instrument approach using data fusion and random forest classification to improve the detection of various components in complex opioid samples in a point-of-care setting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合表面增强拉曼散射和红外数据的优化机器学习方法用于非法阿片类药物中二甲苯的痕量检测
红外吸收光谱和表面增强拉曼光谱被整合到三种数据融合策略中——混合(串联光谱)、中级(从两个数据集提取特征)和高级(融合两种模型的预测)——以提高非法阿片类药物样品中二甲肼检测的预测准确性。三种化学计量学方法——随机森林、支持向量机和k近邻算法——被采用,并对所有融合策略使用5倍交叉验证网格搜索进行优化。验证结果表明,随机森林分类器是所有融合策略的最佳模型,具有高灵敏度(杂交88%,中级92%,高级96%)和特异性(杂交、中级和高级88%)。高水平融合方法的增强性能(F1得分为92%)得到了证明,有效地利用了具有90%投票权重的表面增强拉曼数据,而与红外光谱数据结合时,预测精度(92%)不会受到影响。这突出了使用数据融合和随机森林分类的多仪器方法的可行性,以改善在护理点环境中对复杂阿片类药物样品中各种成分的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Portable and Rapid Solid Sample Preparation System Utilizing Twin-Screw Mechanism for Diagnostic Applications Single-cell lipidomics: protocol development for reliable cellular profiling using capillary sampling Development of a High-Resolution Paper-Spray Mass Spectrometry Method using Street Drugs for the Early Detection of Emerging Drugs in the Unregulated Supply Copper doped NH2-metal-organic frameworks as co-reactant modulating unit for sensitive electrochemiluminescence immunoassay Reduction of Background-Triggered Amplification in Lesion-Induced DNA Amplification (LIDA)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1