Prepared Hollow Nanosphere MoO2/rGO Composite for low concentration Dopamine Detection

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2025-01-17 DOI:10.1016/j.electacta.2025.145717
Lihong Liu, Bo Li, Ming Yang, Yannan Mu, Duo zhang, Lihua Huo
{"title":"Prepared Hollow Nanosphere MoO2/rGO Composite for low concentration Dopamine Detection","authors":"Lihong Liu, Bo Li, Ming Yang, Yannan Mu, Duo zhang, Lihua Huo","doi":"10.1016/j.electacta.2025.145717","DOIUrl":null,"url":null,"abstract":"Metal oxide and graphene composite material have been a promising material for developing electrochemical sensors. In this work, we prepared graphene (rGO) doped MoO<sub>2</sub> hollow nanosphere composite (MoO<sub>2</sub>/rGO) using a simple one-step solvothermal without any template.The hollow nanosphere was constructed by nanoparticles and uniformly anchored onto graphene sheets.The dopamine (DA) sensor was constructed by modifying the MoO<sub>2</sub>/rGO composite to the glass carbon electrode (GCE) surface with a simple drop coating (MoO<sub>2</sub>/rGO/GCE), which shows high sensitivity(101.20 μA·μM<sup>-1</sup>·cm<sup>-2</sup>), low detection limit (6.8 nM), high selectivity and good stability for DA. Meanwhile, the MoO<sub>2</sub>/rGO/GCE demonstrates very little interference with dopamine determination when both Uric acid (UA) and ascorbic acid (AA) are present. The exceptional efficacy of the sensor is attributed to the MoO₂/rGO composite's unique attributes,which include a hollow structure, low charge transfer resistance, a large electrochemical active area, and an abundance of active sites. Furthermore, the MoO₂/rGO/GCE sensor demonstrates capabilities for the detection of minute dopamine levels in human serum, utilizing the standard addition method. This suggests its applicability in the realm of biomedical diagnostics.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"96 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.145717","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal oxide and graphene composite material have been a promising material for developing electrochemical sensors. In this work, we prepared graphene (rGO) doped MoO2 hollow nanosphere composite (MoO2/rGO) using a simple one-step solvothermal without any template.The hollow nanosphere was constructed by nanoparticles and uniformly anchored onto graphene sheets.The dopamine (DA) sensor was constructed by modifying the MoO2/rGO composite to the glass carbon electrode (GCE) surface with a simple drop coating (MoO2/rGO/GCE), which shows high sensitivity(101.20 μA·μM-1·cm-2), low detection limit (6.8 nM), high selectivity and good stability for DA. Meanwhile, the MoO2/rGO/GCE demonstrates very little interference with dopamine determination when both Uric acid (UA) and ascorbic acid (AA) are present. The exceptional efficacy of the sensor is attributed to the MoO₂/rGO composite's unique attributes,which include a hollow structure, low charge transfer resistance, a large electrochemical active area, and an abundance of active sites. Furthermore, the MoO₂/rGO/GCE sensor demonstrates capabilities for the detection of minute dopamine levels in human serum, utilizing the standard addition method. This suggests its applicability in the realm of biomedical diagnostics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Prepared Hollow Nanosphere MoO2/rGO Composite for low concentration Dopamine Detection Study of Surface-Active Substances Using Alternating Current Voltammetry and Mercury Electrode by Potentiostat without Phase Sensitivity Modules Iron electrowinning from a nickel refinery residue for sustainable steelmaking Enhancing Ti/SnO2 electrodes for electrocatalytic performance: New insights for modifications EPR/UV–Vis–NIR spectroelectrochemical characterization of 10H-phenothiazinyl-substituted oligothiophenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1