Yu Gao, Yonghui Fan, Hao Zhang, Peerapol Pornsetmetakul, Brahim Mezari, Jorden Wagemakers, Mahesh Ramakrishnan, Konstantin Klementiev, Nikolay Kosinov, Emiel J. M. Hensen
{"title":"Stable CO2 Hydrogenation to Methanol by Cu Interacting with Isolated Zn Cations in Zincosilicate CIT-6","authors":"Yu Gao, Yonghui Fan, Hao Zhang, Peerapol Pornsetmetakul, Brahim Mezari, Jorden Wagemakers, Mahesh Ramakrishnan, Konstantin Klementiev, Nikolay Kosinov, Emiel J. M. Hensen","doi":"10.1021/acscatal.4c07496","DOIUrl":null,"url":null,"abstract":"The catalytic conversion of carbon dioxide (CO<sub>2</sub>) to methanol over Cu/ZnO catalysts is expected to become valuable for recycling CO<sub>2</sub>. The nature of the Cu–Zn interplay remains a subject of intense debate due to many different Zn species encountered in Cu/ZnO catalysts. In this study, we designed a Cu–Zn catalyst by ion-exchanging Cu into CIT-6, a crystalline microporous zincosilicate with the BEA* topology. The catalyst exhibited high and stable CO<sub>2</sub> hydrogenation rate to methanol. In contrast, its aluminosilicate counterparts Cu-Beta and CuZn-Beta mainly converted CO<sub>2</sub> to CO. <i>Operando</i> X-ray absorption spectroscopy combined with X-ray diffraction confirmed the stability of Zn cations in the zincosilicate framework during reduction in H<sub>2</sub> and reaction in CO<sub>2</sub>/H<sub>2</sub>. The active phase consisted of highly dispersed Cu particles. These particles located near isolated Zn<sup>2+</sup> species represent a different type of active site for methanol synthesis than the active phases proposed for Cu–Zn catalysts, such as Cu–Zn alloy particles and Cu particles decorated with ZnO<sub><i>x</i></sub>. In situ IR spectroscopy showed the formation of Zn-formate species during CO<sub>2</sub> hydrogenation, indicating that Zn<sup>2+</sup> ions stabilize formate as a reaction intermediate in the hydrogenation of CO<sub>2</sub> to methanol.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"2 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c07496","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The catalytic conversion of carbon dioxide (CO2) to methanol over Cu/ZnO catalysts is expected to become valuable for recycling CO2. The nature of the Cu–Zn interplay remains a subject of intense debate due to many different Zn species encountered in Cu/ZnO catalysts. In this study, we designed a Cu–Zn catalyst by ion-exchanging Cu into CIT-6, a crystalline microporous zincosilicate with the BEA* topology. The catalyst exhibited high and stable CO2 hydrogenation rate to methanol. In contrast, its aluminosilicate counterparts Cu-Beta and CuZn-Beta mainly converted CO2 to CO. Operando X-ray absorption spectroscopy combined with X-ray diffraction confirmed the stability of Zn cations in the zincosilicate framework during reduction in H2 and reaction in CO2/H2. The active phase consisted of highly dispersed Cu particles. These particles located near isolated Zn2+ species represent a different type of active site for methanol synthesis than the active phases proposed for Cu–Zn catalysts, such as Cu–Zn alloy particles and Cu particles decorated with ZnOx. In situ IR spectroscopy showed the formation of Zn-formate species during CO2 hydrogenation, indicating that Zn2+ ions stabilize formate as a reaction intermediate in the hydrogenation of CO2 to methanol.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.