{"title":"Targeted Modulation of the Meningeal Lymphatic Reverse Pathway for Immunotherapy of Breast Cancer Brain Metastases","authors":"Yanfeng Dai, Xiang Yu, Yifan Zhao, Jianshuang Wei, Dong Lin, Jialu Wang, Ren Zhang, Xuenan Yuan, Sanmu Li, Songlin Huang, Qian Liu, Zhihong Zhang","doi":"10.1021/acsnano.4c15860","DOIUrl":null,"url":null,"abstract":"Treatment of tumor brain metastases remains challenging due to the ineffectiveness of drugs in crossing the blood–brain barrier (BBB). Here, we proposed a potential strategy to target and modulate the meningeal lymphatic system for immunotherapy of breast cancer brain metastases (BCBM) through peripheral administration. CT/fluorescence dual-modality imaging demonstrated that the phospholipid nanoprobe (α-PLNPs) through intracisternal magna injection effectively labeled and long-range tracked the meningeal lymphatic pathway from meningeal lymphatic vessels (MLVs) to periphery drainage cervical lymph nodes (CLNs). Interestingly, the reverse pathway from CLNs to MLVs was also successfully labeled with α-PLNPs through cervical subcutaneous injection, facilitating the noninvasive delivery of immunomodulators to the meningeal lymphatics. Given this, we used melittin-carrying α-M-PLNPs to trigger the modulation of the meningeal lymphatic reverse pathway, which effectively prevents BCBM and prolongs the survival of mice through activating the antigen-presenting cells in the CLNs and promoting the migration of CD8<sup>+</sup> T cells into the metastatic brain tumors. This study highlights the potential of the meningeal lymphatic reverse pathway for the immunotherapy of BCBM, which holds great promise for central nervous system disease therapy without the need for drug delivery via BBB.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"69 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c15860","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Treatment of tumor brain metastases remains challenging due to the ineffectiveness of drugs in crossing the blood–brain barrier (BBB). Here, we proposed a potential strategy to target and modulate the meningeal lymphatic system for immunotherapy of breast cancer brain metastases (BCBM) through peripheral administration. CT/fluorescence dual-modality imaging demonstrated that the phospholipid nanoprobe (α-PLNPs) through intracisternal magna injection effectively labeled and long-range tracked the meningeal lymphatic pathway from meningeal lymphatic vessels (MLVs) to periphery drainage cervical lymph nodes (CLNs). Interestingly, the reverse pathway from CLNs to MLVs was also successfully labeled with α-PLNPs through cervical subcutaneous injection, facilitating the noninvasive delivery of immunomodulators to the meningeal lymphatics. Given this, we used melittin-carrying α-M-PLNPs to trigger the modulation of the meningeal lymphatic reverse pathway, which effectively prevents BCBM and prolongs the survival of mice through activating the antigen-presenting cells in the CLNs and promoting the migration of CD8+ T cells into the metastatic brain tumors. This study highlights the potential of the meningeal lymphatic reverse pathway for the immunotherapy of BCBM, which holds great promise for central nervous system disease therapy without the need for drug delivery via BBB.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.