Eduardo A. Dias de Oliveira, Nicholas Glass, Kyungdahm Yun, Eduardo Habermann, Roser Matamala, Alina Zare, Soo-Hyung Kim, Miquel Gonzalez-Meler
{"title":"Root architectural plasticity optimizes nutrient acquisition in switchgrass under variable phosphorus forms","authors":"Eduardo A. Dias de Oliveira, Nicholas Glass, Kyungdahm Yun, Eduardo Habermann, Roser Matamala, Alina Zare, Soo-Hyung Kim, Miquel Gonzalez-Meler","doi":"10.1007/s11104-024-07178-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims</h3><p>Understanding the influence of different forms of phosphorus (P) over the different root traits and how those traits are related to increasing the efficiency of nutrient acquisition strategies.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Investigation of switchgrass (Panicum virgatum L.) root morphology responses to inorganic P (Pi) soluble (Potassium-P), insoluble (Aluminum-P), and organic P (Po) (Inositol Hexa-Phosphate, IHex-P) in rhizoboxes. Roots were traced over the root box and scanned using WinRhizoTM. The CRootbox model was employed to simulate root growth.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Significant plasticity observed under IHex-P treatment, with a 46% increase in root branching, leading to a 74% rise in total root length and a 65% increase in root surface area compared to inorganic P forms. IHex-P resulted in a 73% higher root biomass than Aluminum-P and a 26% increase compared to Potassium-P. Most of the differences were attributed to the elongation of root branches.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The study emphasizes the dynamic nature of switchgrass root architecture and morphology in response to varying P forms in the soil. The absence of Pi in the soil triggered increased plasticity in root traits, facilitating root access to Po and uptake of P. These findings offer valuable insights into the adaptive mechanisms of perennial plants, with significant implications for optimizing nutrient acquisition strategies in both agricultural and natural ecosystems.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"37 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-024-07178-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims
Understanding the influence of different forms of phosphorus (P) over the different root traits and how those traits are related to increasing the efficiency of nutrient acquisition strategies.
Methods
Investigation of switchgrass (Panicum virgatum L.) root morphology responses to inorganic P (Pi) soluble (Potassium-P), insoluble (Aluminum-P), and organic P (Po) (Inositol Hexa-Phosphate, IHex-P) in rhizoboxes. Roots were traced over the root box and scanned using WinRhizoTM. The CRootbox model was employed to simulate root growth.
Results
Significant plasticity observed under IHex-P treatment, with a 46% increase in root branching, leading to a 74% rise in total root length and a 65% increase in root surface area compared to inorganic P forms. IHex-P resulted in a 73% higher root biomass than Aluminum-P and a 26% increase compared to Potassium-P. Most of the differences were attributed to the elongation of root branches.
Conclusions
The study emphasizes the dynamic nature of switchgrass root architecture and morphology in response to varying P forms in the soil. The absence of Pi in the soil triggered increased plasticity in root traits, facilitating root access to Po and uptake of P. These findings offer valuable insights into the adaptive mechanisms of perennial plants, with significant implications for optimizing nutrient acquisition strategies in both agricultural and natural ecosystems.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.