The rhizosphere bacteriome is modified by wheat genotype and growth stage under increased imidazolinone herbicide residues

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE Biology and Fertility of Soils Pub Date : 2025-01-18 DOI:10.1007/s00374-025-01890-9
Bernard B. Dzoma, Yi Zhou, Nigel Wilhelm, Matthew Denton
{"title":"The rhizosphere bacteriome is modified by wheat genotype and growth stage under increased imidazolinone herbicide residues","authors":"Bernard B. Dzoma, Yi Zhou, Nigel Wilhelm, Matthew Denton","doi":"10.1007/s00374-025-01890-9","DOIUrl":null,"url":null,"abstract":"<p>When imidazolinone herbicides persist longer than intended and remain active in the soil, they can have unknown impacts on soil health. This study investigated the impact of simulated soil residues of an imidazolinone herbicide on shoot dry matter and bacterial communities in the bulk and rhizosphere soil in tolerant and susceptible wheat genotypes, at two different crop growth stages. Four levels of gradient increased herbicide residues were applied, and rhizosphere bacterial diversity and community composition were analysed using 16S rRNA gene amplicon sequencing. Our results highlight that the shift in wheat rhizosphere bacteriome is driven more by the crop growth stage and wheat genotype than the presence and level of imidazolinone residues. Results showed a linear trend of increasing alpha diversity with increasing herbicide residues during the early crop growth stage, and a decrease in alpha diversity with increasing herbicide residues during the late crop growth stage, only for the tolerant genotype. The order Betaproteobacteriales in the rhizosphere was increased by herbicide residues to a greater extent than the other taxonomic groups. During the early growth stage, there were more ASV (amplicon sequence variant) enriched by imidazolinone herbicide residues in the rhizosphere of the tolerant genotype compared with the susceptible genotype. Future research work should consider studies with soils that have different physicochemical properties, and focus on other soil microbes of known significance to nutrient cycling and crop growth.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-025-01890-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

When imidazolinone herbicides persist longer than intended and remain active in the soil, they can have unknown impacts on soil health. This study investigated the impact of simulated soil residues of an imidazolinone herbicide on shoot dry matter and bacterial communities in the bulk and rhizosphere soil in tolerant and susceptible wheat genotypes, at two different crop growth stages. Four levels of gradient increased herbicide residues were applied, and rhizosphere bacterial diversity and community composition were analysed using 16S rRNA gene amplicon sequencing. Our results highlight that the shift in wheat rhizosphere bacteriome is driven more by the crop growth stage and wheat genotype than the presence and level of imidazolinone residues. Results showed a linear trend of increasing alpha diversity with increasing herbicide residues during the early crop growth stage, and a decrease in alpha diversity with increasing herbicide residues during the late crop growth stage, only for the tolerant genotype. The order Betaproteobacteriales in the rhizosphere was increased by herbicide residues to a greater extent than the other taxonomic groups. During the early growth stage, there were more ASV (amplicon sequence variant) enriched by imidazolinone herbicide residues in the rhizosphere of the tolerant genotype compared with the susceptible genotype. Future research work should consider studies with soils that have different physicochemical properties, and focus on other soil microbes of known significance to nutrient cycling and crop growth.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
期刊最新文献
The rhizosphere bacteriome is modified by wheat genotype and growth stage under increased imidazolinone herbicide residues Biochar-based controlled-release fertilizers for enhancing plant growth and environmental sustainability: a review Eucommia ulmoides adapts to drought stress by recruiting rhizosphere microbes to upregulate specific functions Plant Growth-Promoting Yeasts (PGPYs) as a sustainable solution to mitigate salt-induced stress on zucchini plant growth Host genotype‑specific plant microbiome correlates with wheat disease resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1