Snow avalanche‐induced disturbances can resurrect extinct zooplankton and alter paleolimnological records

IF 3.8 1区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Pub Date : 2025-01-17 DOI:10.1002/lno.12783
Ignacio Granados, Manuel Toro, Carlos Montes, Antonio Camacho
{"title":"Snow avalanche‐induced disturbances can resurrect extinct zooplankton and alter paleolimnological records","authors":"Ignacio Granados, Manuel Toro, Carlos Montes, Antonio Camacho","doi":"10.1002/lno.12783","DOIUrl":null,"url":null,"abstract":"We present a detailed observational study of the effects of the impulse wave caused by a snow‐avalanche on an alpine lake (Lake Peñalara, Sierra de Guadarrama, Spain). The avalanche broke the lake's ice cover (&gt; 50 cm thick) and caused the lake to overflow. The impulse wave altered the lake water column stratification and physicochemical properties (dissolved oxygen, conductivity) in the short (hours) and mid‐term (days and weeks). It also caused the mobilization of hundreds of cubic meters of sediment, changing the lake morphometry. The sediment reconfiguration is likely the cause of the observed increased sedimentation rate and changes in the zooplankton density and composition in the following 4 yr after the avalanche, including the resurrection of a cladoceran species (<jats:italic>Daphnia pulicaria</jats:italic>) that had disappeared from the lake decades ago. Events such as the one we present can have significant paleolimnological implications: in this case, 75 cm of the sediment sequence were lost. Given these results, we propose that past avalanches could be the explanation to the almost complete removal of sediment from the deepest part of the lake around 260 yr cal BCE.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"37 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12783","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We present a detailed observational study of the effects of the impulse wave caused by a snow‐avalanche on an alpine lake (Lake Peñalara, Sierra de Guadarrama, Spain). The avalanche broke the lake's ice cover (> 50 cm thick) and caused the lake to overflow. The impulse wave altered the lake water column stratification and physicochemical properties (dissolved oxygen, conductivity) in the short (hours) and mid‐term (days and weeks). It also caused the mobilization of hundreds of cubic meters of sediment, changing the lake morphometry. The sediment reconfiguration is likely the cause of the observed increased sedimentation rate and changes in the zooplankton density and composition in the following 4 yr after the avalanche, including the resurrection of a cladoceran species (Daphnia pulicaria) that had disappeared from the lake decades ago. Events such as the one we present can have significant paleolimnological implications: in this case, 75 cm of the sediment sequence were lost. Given these results, we propose that past avalanches could be the explanation to the almost complete removal of sediment from the deepest part of the lake around 260 yr cal BCE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪崩引发的扰动可复活已灭绝的浮游动物并改变古气候学记录
我们对雪崩造成的脉冲波对一个高山湖泊(西班牙瓜达拉马山脉佩尼亚拉拉湖)的影响进行了详细的观测研究。雪崩打破了湖面的冰盖(50 厘米厚),导致湖水溢出。冲击波在短期内(数小时)和中期内(数天和数周)改变了湖泊的水柱分层和物理化学特性(溶解氧、电导率)。它还造成了数百立方米沉积物的移动,改变了湖泊形态。在雪崩发生后的 4 年里,沉积物的重新配置很可能是导致沉积速率增加、浮游动物密度和组成发生变化的原因,其中包括一种几十年前就从湖中消失的桡足类(Daphnia pulicaria)的复活。像我们介绍的这种事件会对古气候学产生重大影响:在这一案例中,75 厘米的沉积序列消失了。鉴于这些结果,我们认为,过去的雪崩可能是公元前 260 年左右湖泊最深处沉积物几乎完全消失的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
期刊最新文献
Lake chlorophyll responses to drought are related to lake type, connectivity, and ecological context across the conterminous United States Baroclinic instability‐induced intensification of phytoplankton blooms at submesoscales in eutrophic frontal regions Molecular composition of dissolved organic matter from young organic‐rich hydrothermal deep‐sea sediments Marine snow as vectors for microplastic transport: Multiple aggregation cycles account for the settling of buoyant microplastics to deep‐sea sediments Midwater anoxia disrupts the trophic structure of zooplankton and fish in an oxygen deficient zone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1