Olivia T. Vulpin, James B. Mitchell, Lihaokun Chen, Jeonghoon Lim, Sayantan Sasmal, Nathan G. Price, Sam R. Jarvis, Shannon W. Boettcher
{"title":"Comparing Advanced Bipolar Membranes for High-Current Electrodialysis and Membrane Electrolysis","authors":"Olivia T. Vulpin, James B. Mitchell, Lihaokun Chen, Jeonghoon Lim, Sayantan Sasmal, Nathan G. Price, Sam R. Jarvis, Shannon W. Boettcher","doi":"10.1021/acsenergylett.4c03538","DOIUrl":null,"url":null,"abstract":"Advanced bipolar membranes (BPMs) with low water-dissociation overpotential (η<sub>wd</sub>) may enable new electrochemical technologies for electrolysis, fuel cells, acid–base synthesis, brine remediation, lithium-battery recycling, and cement production. However, these advanced BPMs have only been demonstrated in BPM water electrolysis (BPMWE) configurations where the BPM is under static compression by the porous-transport layers. It is important to study these BPMs in applications like electrodialysis where large degrees of static compression are not possible. We present a BPM electrodialysis (BPMED) platform to measure water-dissociation overpotential (η<sub>wd</sub>) and compare BPMWE and BPMED systems. We show advanced BPMs with half the η<sub>wd</sub> compared to commercial BPMs for BPMED while maintaining ∼90% current efficiency from 0.05–0.5 A cm<sup>–2</sup>. The BPMED η<sub>wd</sub> values are, however, about 0.2 V higher at 0.5 A cm<sup>–2</sup> than those for BPMWE. Regardless, these results show that BPMs developed and optimized in BPMWE applications are well-suited for next-generation high-current-density BPMED technologies.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"30 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03538","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced bipolar membranes (BPMs) with low water-dissociation overpotential (ηwd) may enable new electrochemical technologies for electrolysis, fuel cells, acid–base synthesis, brine remediation, lithium-battery recycling, and cement production. However, these advanced BPMs have only been demonstrated in BPM water electrolysis (BPMWE) configurations where the BPM is under static compression by the porous-transport layers. It is important to study these BPMs in applications like electrodialysis where large degrees of static compression are not possible. We present a BPM electrodialysis (BPMED) platform to measure water-dissociation overpotential (ηwd) and compare BPMWE and BPMED systems. We show advanced BPMs with half the ηwd compared to commercial BPMs for BPMED while maintaining ∼90% current efficiency from 0.05–0.5 A cm–2. The BPMED ηwd values are, however, about 0.2 V higher at 0.5 A cm–2 than those for BPMWE. Regardless, these results show that BPMs developed and optimized in BPMWE applications are well-suited for next-generation high-current-density BPMED technologies.
具有低水解离过电位(41wd)的先进双极膜(bpm)可能为电解、燃料电池、酸碱合成、盐水修复、锂电池回收和水泥生产带来新的电化学技术。然而,这些先进的BPM仅在BPM水电解(BPMWE)配置中得到了演示,其中BPM处于多孔传输层的静态压缩下。在电渗析等不可能实现大程度静态压缩的应用中研究这些bpm是很重要的。我们提出了一个BPM电渗析(BPMED)平台来测量水解离过电位(ηwd),并比较BPMWE和BPMED系统。我们展示了先进的bpm与商业bpm相比,在0.05-0.5 A cm-2范围内保持约90%的电流效率。在0.5 A cm-2时,bpmmed的ηwd值比BPMWE高0.2 V左右。无论如何,这些结果表明,在BPMWE应用中开发和优化的bpm非常适合下一代高电流密度BPMED技术。
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.