Sergey V. Fedorov, Nikolay A. Veretenov, Nikolay N. Rosanov
{"title":"Vector spatial and spatiotemporal laser solitons","authors":"Sergey V. Fedorov, Nikolay A. Veretenov, Nikolay N. Rosanov","doi":"10.1515/nanoph-2024-0582","DOIUrl":null,"url":null,"abstract":"Dissipative optical solitons, i.e. packets of radiation localized not due to the presence of optical inhomogeneities of the scheme or medium, but due to the balance of energy inflow and outflow in a nonlinear medium, deserve special attention for a number of reasons. First, these solitons are “calibrated” with a discrete set of basic parameters. This will lead to their increased stability: dissipative solitons are attractors, they are not sensitive to small perturbations. Second, progress in laser technology and the emergence of new laser and nonlinear optical materials provides an opportunity not only to study the rich physics of dissipative solitons, but also to propose their promising applications. This paper, which combines both a review of the current level of theory and original results, is devoted mainly to new types of these solitons. These types exploit the topological features of structured radiation, characteristic of vector, polarization dissipative solitons, which have a nontrivial internal structure. We sequentially present one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) polarization solitons, identify limitations in the topological protection of the information that can be encoded by topological charges and indices and discuss development prospects in this area.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"205 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0582","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dissipative optical solitons, i.e. packets of radiation localized not due to the presence of optical inhomogeneities of the scheme or medium, but due to the balance of energy inflow and outflow in a nonlinear medium, deserve special attention for a number of reasons. First, these solitons are “calibrated” with a discrete set of basic parameters. This will lead to their increased stability: dissipative solitons are attractors, they are not sensitive to small perturbations. Second, progress in laser technology and the emergence of new laser and nonlinear optical materials provides an opportunity not only to study the rich physics of dissipative solitons, but also to propose their promising applications. This paper, which combines both a review of the current level of theory and original results, is devoted mainly to new types of these solitons. These types exploit the topological features of structured radiation, characteristic of vector, polarization dissipative solitons, which have a nontrivial internal structure. We sequentially present one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) polarization solitons, identify limitations in the topological protection of the information that can be encoded by topological charges and indices and discuss development prospects in this area.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.