Shaoxiong Huang , Yafeng Wang , Xian Xu , Yaozhi Luo
{"title":"Topology generation and quantitative stiffness analysis for fiber networks based on disordered spatial truss","authors":"Shaoxiong Huang , Yafeng Wang , Xian Xu , Yaozhi Luo","doi":"10.1016/j.jmps.2025.106030","DOIUrl":null,"url":null,"abstract":"<div><div>Fiber networks are essential functional materials, yet existing mechanical models only capture specific aspects of their mechanical properties. This paper proposes a general mechanical model for fiber networks based on pin-jointed bar assemblies. The topology and stress modes of the networks are generated through topology optimization. The model decouples and quantifies the contributions of entropy fluctuation, rearrangement, and fiber stress to the overall stiffness, explaining stiffness variations in actin networks and the differences in stiffness between thermal and athermal networks. It also replicates the experimental strengthening effects of prestressed fiber networks, theoretically justifying the power-law relationship between applied stress/strain and stiffness. A macroscopic 3D-printed experiment validates the model's ability to replicate stiffness variations and the rearrangement phenomena observed in collagen networks under compression and shear. This model enables a comprehensive investigation of the mechanical properties of fiber networks and contributes to the design of novel biomimetic metamaterials.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"196 ","pages":"Article 106030"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625000067","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber networks are essential functional materials, yet existing mechanical models only capture specific aspects of their mechanical properties. This paper proposes a general mechanical model for fiber networks based on pin-jointed bar assemblies. The topology and stress modes of the networks are generated through topology optimization. The model decouples and quantifies the contributions of entropy fluctuation, rearrangement, and fiber stress to the overall stiffness, explaining stiffness variations in actin networks and the differences in stiffness between thermal and athermal networks. It also replicates the experimental strengthening effects of prestressed fiber networks, theoretically justifying the power-law relationship between applied stress/strain and stiffness. A macroscopic 3D-printed experiment validates the model's ability to replicate stiffness variations and the rearrangement phenomena observed in collagen networks under compression and shear. This model enables a comprehensive investigation of the mechanical properties of fiber networks and contributes to the design of novel biomimetic metamaterials.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.