Bayesian optimization with Gaussian-process-based active machine learning for improvement of geometric accuracy in projection multi-photon 3D printing

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2025-01-20 DOI:10.1038/s41377-024-01707-8
Jason E. Johnson, Ishat Raihan Jamil, Liang Pan, Guang Lin, Xianfan Xu
{"title":"Bayesian optimization with Gaussian-process-based active machine learning for improvement of geometric accuracy in projection multi-photon 3D printing","authors":"Jason E. Johnson, Ishat Raihan Jamil, Liang Pan, Guang Lin, Xianfan Xu","doi":"10.1038/s41377-024-01707-8","DOIUrl":null,"url":null,"abstract":"<p>Multi-photon polymerization is a well-established, yet actively developing, additive manufacturing technique for 3D printing on the micro/nanoscale. Like all additive manufacturing techniques, determining the process parameters necessary to achieve dimensional accuracy for a structure 3D printed using this method is not always straightforward and can require time-consuming experimentation. In this work, an active machine learning based framework is presented for determining optimal process parameters for the recently developed, high-speed, layer-by-layer continuous projection 3D printing process. The proposed active learning framework uses Bayesian optimization to inform optimal experimentation in order to adaptively collect the most informative data for effective training of a Gaussian-process-regression-based machine learning model. This model then serves as a surrogate for the manufacturing process: predicting optimal process parameters for achieving a target geometry, e.g., the 2D geometry of each printed layer. Three representative 2D shapes at three different scales are used as test cases. In each case, the active learning framework improves the geometric accuracy, with drastic reductions of the errors to within the measurement accuracy in just four iterations of the Bayesian optimization using only a few hundred of total training data. The case studies indicate that the active learning framework developed in this work can be broadly applied to other additive manufacturing processes to increase accuracy with significantly reduced experimental data collection effort for optimization.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"205 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01707-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-photon polymerization is a well-established, yet actively developing, additive manufacturing technique for 3D printing on the micro/nanoscale. Like all additive manufacturing techniques, determining the process parameters necessary to achieve dimensional accuracy for a structure 3D printed using this method is not always straightforward and can require time-consuming experimentation. In this work, an active machine learning based framework is presented for determining optimal process parameters for the recently developed, high-speed, layer-by-layer continuous projection 3D printing process. The proposed active learning framework uses Bayesian optimization to inform optimal experimentation in order to adaptively collect the most informative data for effective training of a Gaussian-process-regression-based machine learning model. This model then serves as a surrogate for the manufacturing process: predicting optimal process parameters for achieving a target geometry, e.g., the 2D geometry of each printed layer. Three representative 2D shapes at three different scales are used as test cases. In each case, the active learning framework improves the geometric accuracy, with drastic reductions of the errors to within the measurement accuracy in just four iterations of the Bayesian optimization using only a few hundred of total training data. The case studies indicate that the active learning framework developed in this work can be broadly applied to other additive manufacturing processes to increase accuracy with significantly reduced experimental data collection effort for optimization.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Optical semantic communication through multimode fiber: from symbol transmission to sentiment analysis Using light to image millimeter wave based on stacked meta-MEMS chip Comment on “Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning” Cascaded metalenses boost applications in near-eye display Reply to: comment on “Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1