Zhong Zheng, Jian-Biao Wang, Rui Sun, Nan Wang, Xiang-Qin Weng, Tian-Yuan Xu, Di Fu, Yan Feng, Peng-Peng Xu, Shu Cheng, Li Wang, Yan Zhao, Bin Qu, Chuan-Xin Huang, Wei-Li Zhao
{"title":"Dual targeting PD-L1 and 4-1BB to overcome dendritic cell-mediated lenalidomide resistance in follicular lymphoma","authors":"Zhong Zheng, Jian-Biao Wang, Rui Sun, Nan Wang, Xiang-Qin Weng, Tian-Yuan Xu, Di Fu, Yan Feng, Peng-Peng Xu, Shu Cheng, Li Wang, Yan Zhao, Bin Qu, Chuan-Xin Huang, Wei-Li Zhao","doi":"10.1038/s41392-024-02105-7","DOIUrl":null,"url":null,"abstract":"<p>Immunomodulatory agent lenalidomide is effective in treating follicular lymphoma (FL). We conducted the first trial of immunotherapy rituximab plus lenalidomide in newly diagnosed FL in China (NCT03715309). One-hundred and fifteen patients were enrolled and treated with rituximab 375 mg/m<sup>2</sup> intravenously on day 0 and lenalidomide 25 mg orally on day 1–10 for 6 cycles of induction treatment, as well as lenalidomide for 6 cycles and rituximab for 8 cycles of maintenance treatment. We found that inferior progression-free survival of the patients was significantly associated with elevated serum β2m and lymph node >6 cm, linking to decreased lymphoma cell autophagy and dendritic cell infiltration within the tumor microenvironment. PU.1 transcriptionally downregulated PD-L1 (Programmed death ligand 1) expression and upregulated 4-1BBL (4-1BB ligand) expression, increased lymphoma cell autophagy and dendritic cell maturation via PD-1/PD-L1 and 4-1BB/4-1BBL interaction. In vitro in co-culture system and in vivo in murine xenograft model, knockdown of PU.1 induced lenalidomide resistance, but sensitized FL cells to bi-specific PD-L1/4-1BB antibody or combined treatment of PD-L1 inhibitor and 4-1BB agonist. Collectively, PU.1 is essential in immunomodulatory effect of FL through PD-1/PD-L1- and 4-1BB/4-1BBL-mediated microenvironmental modulation. Dual targeting PD-L1 and 4-1BB could be an alternative immunotherapeutic strategy in the chemo-free era of FL treatment.</p>","PeriodicalId":21766,"journal":{"name":"Signal Transduction and Targeted Therapy","volume":"37 1","pages":""},"PeriodicalIF":40.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Transduction and Targeted Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41392-024-02105-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Immunomodulatory agent lenalidomide is effective in treating follicular lymphoma (FL). We conducted the first trial of immunotherapy rituximab plus lenalidomide in newly diagnosed FL in China (NCT03715309). One-hundred and fifteen patients were enrolled and treated with rituximab 375 mg/m2 intravenously on day 0 and lenalidomide 25 mg orally on day 1–10 for 6 cycles of induction treatment, as well as lenalidomide for 6 cycles and rituximab for 8 cycles of maintenance treatment. We found that inferior progression-free survival of the patients was significantly associated with elevated serum β2m and lymph node >6 cm, linking to decreased lymphoma cell autophagy and dendritic cell infiltration within the tumor microenvironment. PU.1 transcriptionally downregulated PD-L1 (Programmed death ligand 1) expression and upregulated 4-1BBL (4-1BB ligand) expression, increased lymphoma cell autophagy and dendritic cell maturation via PD-1/PD-L1 and 4-1BB/4-1BBL interaction. In vitro in co-culture system and in vivo in murine xenograft model, knockdown of PU.1 induced lenalidomide resistance, but sensitized FL cells to bi-specific PD-L1/4-1BB antibody or combined treatment of PD-L1 inhibitor and 4-1BB agonist. Collectively, PU.1 is essential in immunomodulatory effect of FL through PD-1/PD-L1- and 4-1BB/4-1BBL-mediated microenvironmental modulation. Dual targeting PD-L1 and 4-1BB could be an alternative immunotherapeutic strategy in the chemo-free era of FL treatment.
期刊介绍:
Signal Transduction and Targeted Therapy is an open access journal that focuses on timely publication of cutting-edge discoveries and advancements in basic science and clinical research related to signal transduction and targeted therapy.
Scope: The journal covers research on major human diseases, including, but not limited to:
Cancer,Cardiovascular diseases,Autoimmune diseases,Nervous system diseases.