{"title":"Continuous Abrupt Vegetation Shifts in the Global Terrestrial Ecosystem","authors":"Maohong Wei, Shengpeng Li, Lin Zhu, Xueqiang Lu, Hongyuan Li, Jianfeng Feng","doi":"10.1111/ele.70069","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Previous studies have primarily focused on single abrupt shifts; however, the actual ecosystem will experience continuous abrupt shifts (CAS), including different directions shifts (DDS) and same direction shifts (SDS). The patterns and drivers of these CAS remain unclear. We examined the patterns of the DDS and SDS by two vegetation datasets and then tested climate drivers comprising atmospheric temperature (MAT), atmospheric precipitation (MAP), soil temperature (ST) and soil water content (SW); finally, hysteresis effects were examined with reference to principal drivers. The results demonstrate that the DDS and SDS varied across climatic regions. The ST, SW, MAT and MAP were the primary drivers of the DDS, while the MAT and MAP were the primary drivers of the SDS. Furthermore, the presence of hysteresis effects was validated via the DDS. This study presents the widespread occurrence of the CAS and the divergent roles of climate change on the DDS and SDS globally.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70069","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Previous studies have primarily focused on single abrupt shifts; however, the actual ecosystem will experience continuous abrupt shifts (CAS), including different directions shifts (DDS) and same direction shifts (SDS). The patterns and drivers of these CAS remain unclear. We examined the patterns of the DDS and SDS by two vegetation datasets and then tested climate drivers comprising atmospheric temperature (MAT), atmospheric precipitation (MAP), soil temperature (ST) and soil water content (SW); finally, hysteresis effects were examined with reference to principal drivers. The results demonstrate that the DDS and SDS varied across climatic regions. The ST, SW, MAT and MAP were the primary drivers of the DDS, while the MAT and MAP were the primary drivers of the SDS. Furthermore, the presence of hysteresis effects was validated via the DDS. This study presents the widespread occurrence of the CAS and the divergent roles of climate change on the DDS and SDS globally.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.