Continuous Abrupt Vegetation Shifts in the Global Terrestrial Ecosystem

IF 7.6 1区 环境科学与生态学 Q1 ECOLOGY Ecology Letters Pub Date : 2025-01-20 DOI:10.1111/ele.70069
Maohong Wei, Shengpeng Li, Lin Zhu, Xueqiang Lu, Hongyuan Li, Jianfeng Feng
{"title":"Continuous Abrupt Vegetation Shifts in the Global Terrestrial Ecosystem","authors":"Maohong Wei,&nbsp;Shengpeng Li,&nbsp;Lin Zhu,&nbsp;Xueqiang Lu,&nbsp;Hongyuan Li,&nbsp;Jianfeng Feng","doi":"10.1111/ele.70069","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Previous studies have primarily focused on single abrupt shifts; however, the actual ecosystem will experience continuous abrupt shifts (CAS), including different directions shifts (DDS) and same direction shifts (SDS). The patterns and drivers of these CAS remain unclear. We examined the patterns of the DDS and SDS by two vegetation datasets and then tested climate drivers comprising atmospheric temperature (MAT), atmospheric precipitation (MAP), soil temperature (ST) and soil water content (SW); finally, hysteresis effects were examined with reference to principal drivers. The results demonstrate that the DDS and SDS varied across climatic regions. The ST, SW, MAT and MAP were the primary drivers of the DDS, while the MAT and MAP were the primary drivers of the SDS. Furthermore, the presence of hysteresis effects was validated via the DDS. This study presents the widespread occurrence of the CAS and the divergent roles of climate change on the DDS and SDS globally.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70069","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Previous studies have primarily focused on single abrupt shifts; however, the actual ecosystem will experience continuous abrupt shifts (CAS), including different directions shifts (DDS) and same direction shifts (SDS). The patterns and drivers of these CAS remain unclear. We examined the patterns of the DDS and SDS by two vegetation datasets and then tested climate drivers comprising atmospheric temperature (MAT), atmospheric precipitation (MAP), soil temperature (ST) and soil water content (SW); finally, hysteresis effects were examined with reference to principal drivers. The results demonstrate that the DDS and SDS varied across climatic regions. The ST, SW, MAT and MAP were the primary drivers of the DDS, while the MAT and MAP were the primary drivers of the SDS. Furthermore, the presence of hysteresis effects was validated via the DDS. This study presents the widespread occurrence of the CAS and the divergent roles of climate change on the DDS and SDS globally.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全球陆地生态系统中连续的植被突变
以前的研究主要集中在单一的突变;然而,实际生态系统会经历连续的突变(CAS),包括不同方向的变化(DDS)和相同方向的变化(SDS)。这些CAS的模式和驱动因素尚不清楚。利用两组植被数据分析了DDS和SDS的变化规律,并对包括大气温度(MAT)、大气降水(MAP)、土壤温度(ST)和土壤含水量(SW)在内的气候驱动因子进行了分析;最后,结合主要驱动因素分析了磁滞效应。结果表明,不同气候区DDS和SDS存在差异。ST、SW、MAT和MAP是DDS的主要驱动因子,而MAT和MAP是SDS的主要驱动因子。此外,通过DDS验证了磁滞效应的存在。在全球范围内,气候变化对干旱区和干旱区的影响是不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology Letters
Ecology Letters 环境科学-生态学
CiteScore
17.60
自引率
3.40%
发文量
201
审稿时长
1.8 months
期刊介绍: Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.
期刊最新文献
Issue Information Estimating Spatially Explicit Survival and Mortality Risk From Telemetry Data With Thinned Point Process Models Residence Time Structures Microbial Communities Through Niche Partitioning Plant Species Better Adapted to Climate Change Need Agricultural Extensification to Persist A Fungal Endophyte Alters Poplar Leaf Chemistry, Deters Insect Feeding and Shapes Insect Community Assembly
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1