Expansion Microscopy Revealed Specific Impacts of Nano Zinc Oxide on Early Organ Development in Fish

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Science: Nano Pub Date : 2025-01-21 DOI:10.1039/d4en01071j
Mengyu WANG, Wen-Xiong Wang
{"title":"Expansion Microscopy Revealed Specific Impacts of Nano Zinc Oxide on Early Organ Development in Fish","authors":"Mengyu WANG, Wen-Xiong Wang","doi":"10.1039/d4en01071j","DOIUrl":null,"url":null,"abstract":"Nanomaterials exhibit significant advantages in biomedical applications. However, their potential risks to organisms cannot be overlooked, particularly during early development. Traditional methods for assessing organ-specific toxicity are limited by their difficulty in exploring differences between materials at the nanoscale resolution. The novel expansion microscopy technique (ExM) provides an effective solution for high-resolution nanoscale imaging, allowing biological samples to be expanded approximately 4.5 times in three-dimensional space. ExM enables the visualization of proteins and nucleic acid targets in cells and tissues using conventional optical microscopy, achieving nanoscale imaging. The widespread application of nano zinc oxide (nZnO) in the biomedical field has raised concerns regarding toxicity. This study systematically assesses the toxicological changes and sources of nZnO and Zn²⁺ in the visual, skeletal muscle, and digestive systems. Our results indicated that appropriate concentrations of nZnO supported the normal early development in the visual and skeletal muscle systems, while potentially leading to excessive toxicity in the digestive system. Conversely, the concentrations of nZnO suitable for the development of the digestive system may be inadequate for the needs of the visual and skeletal muscle systems. This discrepancy may arise from differences in the solubility and bioaccessibility of nZnO in gastrointestinal fluids. Further RNA sequencing revealed differences in the sensitivity of various organs to nanomaterial exposure, highlighting the necessity of implementing comprehensive risk assessment strategies in toxicology. Overall, we visualized and quantified the subtle developmental toxicities of nZnO and Zn²⁺ across different organs for the first time. The application of expansion microscopy technique offered a novel perspective for evaluating the toxicity of nanomaterials.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"79 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01071j","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanomaterials exhibit significant advantages in biomedical applications. However, their potential risks to organisms cannot be overlooked, particularly during early development. Traditional methods for assessing organ-specific toxicity are limited by their difficulty in exploring differences between materials at the nanoscale resolution. The novel expansion microscopy technique (ExM) provides an effective solution for high-resolution nanoscale imaging, allowing biological samples to be expanded approximately 4.5 times in three-dimensional space. ExM enables the visualization of proteins and nucleic acid targets in cells and tissues using conventional optical microscopy, achieving nanoscale imaging. The widespread application of nano zinc oxide (nZnO) in the biomedical field has raised concerns regarding toxicity. This study systematically assesses the toxicological changes and sources of nZnO and Zn²⁺ in the visual, skeletal muscle, and digestive systems. Our results indicated that appropriate concentrations of nZnO supported the normal early development in the visual and skeletal muscle systems, while potentially leading to excessive toxicity in the digestive system. Conversely, the concentrations of nZnO suitable for the development of the digestive system may be inadequate for the needs of the visual and skeletal muscle systems. This discrepancy may arise from differences in the solubility and bioaccessibility of nZnO in gastrointestinal fluids. Further RNA sequencing revealed differences in the sensitivity of various organs to nanomaterial exposure, highlighting the necessity of implementing comprehensive risk assessment strategies in toxicology. Overall, we visualized and quantified the subtle developmental toxicities of nZnO and Zn²⁺ across different organs for the first time. The application of expansion microscopy technique offered a novel perspective for evaluating the toxicity of nanomaterials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展显微镜显示纳米氧化锌对鱼类早期器官发育的特殊影响
纳米材料在生物医学应用中具有显著的优势。然而,它们对生物体的潜在风险不容忽视,特别是在早期发育期间。评估器官特异性毒性的传统方法由于难以在纳米尺度分辨率下探索材料之间的差异而受到限制。新型扩展显微镜技术(ExM)为高分辨率纳米级成像提供了有效的解决方案,允许生物样品在三维空间中扩展约4.5倍。ExM能够使用常规光学显微镜可视化细胞和组织中的蛋白质和核酸目标,实现纳米级成像。纳米氧化锌(nZnO)在生物医学领域的广泛应用引起了人们对其毒性的关注。本研究系统地评估了nZnO和Zn 2⁺在视觉、骨骼肌和消化系统中的毒理学变化和来源。我们的研究结果表明,适当浓度的nZnO支持视觉和骨骼肌系统的正常早期发育,同时可能导致消化系统的过度毒性。相反,适合消化系统发育的nZnO浓度可能不足以满足视觉和骨骼肌系统的需要。这种差异可能是由于nZnO在胃肠道液体中的溶解度和生物可及性的差异。进一步的RNA测序揭示了不同器官对纳米材料暴露的敏感性差异,强调了在毒理学中实施综合风险评估策略的必要性。总体而言,我们首次可视化和量化了nZnO和Zn 2⁺在不同器官上的细微发育毒性。扩展显微镜技术的应用为评价纳米材料的毒性提供了一个新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
期刊最新文献
The Role of Nano-Biochar Reduce the Impact of Phenanthrene on Wheat Photosynthesis Combining Trichoderma sp. and biogenic AgNPs from Trichoderma strains as a synergistic control complex to improve the growth of muskmelon and suppress Fusarium oxysporum f. sp. melonis Ozone Aging and Protein Corona Adsorption Exacerbate Inflammatory Effects of Carbon Black on Macrophages and Induce Blood-Testis Barrier Dysfunction in Mice A Perspective on the Potential Impact of Microplastics and Nanoplastics on the Human Central Nervous System Enhanced antibacterial and algae inhibition performance by coral sand-supported nano-Ag composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1