Photoinitiated Thiol–Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion
Zhongshuai Gao, Shuya Zhang, Yanyi Duan, Heng Chang, Mei Cui, Renliang Huang, Rongxin Su
{"title":"Photoinitiated Thiol–Ene Click Reaction for Preparation of Highly Adhesive and Mechanically Stable Silicone Coatings for Marine Antifouling and Anticorrosion","authors":"Zhongshuai Gao, Shuya Zhang, Yanyi Duan, Heng Chang, Mei Cui, Renliang Huang, Rongxin Su","doi":"10.1021/acsami.4c18569","DOIUrl":null,"url":null,"abstract":"Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments. In this work, we presented a marine antifouling and anticorrosion coating named POSS-DMA@PDMS-TCM through photoinitiated thiol–ene click reaction combined with (mercaptopropyl) methylsiloxane dimethylsiloxane (PDMS-SH), dopamine methacrylamide (DMA), sulfhydryl-functionalized organosiloxanes (POSS-(SH)<sub>8</sub>), and <i>N</i>-(2,4,6-trichlorophenyl) maleimide (TCM). The POSS-DMA@PDMS-TCM coating exhibited strong stability and bonding ability both in air (2.17 MPa) and underwater (2.11 MPa) when the DMA content was 3 wt %. The high antibacterial (98.1% for <i>Staphylococcus aureus</i> and 99.5% for <i>Escherichia coli</i>) and antidiatom (94.5%) properties of the POSS-DMA@PDMS-TCM coatings have also been confirmed. Moreover, the POSS-DMA@PDMS-TCM coatings show excellent antifouling abilities in 120-day marine field tests, reducing fouling by 65.5% in comparison to the blank group. The coating also displayed superior anticorrosion performance with <i>E</i><sub>corr</sub> values of −0.055 V, <i>I</i><sub>corr</sub> values of 7.67 × 10<sup>–6</sup> , and <i>R</i><sub>p</sub> values of 3.10 × 10<sup>5</sup> Ω for Cu, which benefited from excellent chelating effect and liquid repellency. This study provides a novel strategy for the development of high-quality marine antifouling and anticorrosion coatings.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"102 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c18569","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine biofouling and corrosion have become the main problems affecting the development of the marine industry. Silicone-based coatings have been widely used for antifouling and anticorrosion due to their low surface energy. However, the poor adhesion and low mechanical stability of these materials limit their application in complex marine environments. In this work, we presented a marine antifouling and anticorrosion coating named POSS-DMA@PDMS-TCM through photoinitiated thiol–ene click reaction combined with (mercaptopropyl) methylsiloxane dimethylsiloxane (PDMS-SH), dopamine methacrylamide (DMA), sulfhydryl-functionalized organosiloxanes (POSS-(SH)8), and N-(2,4,6-trichlorophenyl) maleimide (TCM). The POSS-DMA@PDMS-TCM coating exhibited strong stability and bonding ability both in air (2.17 MPa) and underwater (2.11 MPa) when the DMA content was 3 wt %. The high antibacterial (98.1% for Staphylococcus aureus and 99.5% for Escherichia coli) and antidiatom (94.5%) properties of the POSS-DMA@PDMS-TCM coatings have also been confirmed. Moreover, the POSS-DMA@PDMS-TCM coatings show excellent antifouling abilities in 120-day marine field tests, reducing fouling by 65.5% in comparison to the blank group. The coating also displayed superior anticorrosion performance with Ecorr values of −0.055 V, Icorr values of 7.67 × 10–6 , and Rp values of 3.10 × 105 Ω for Cu, which benefited from excellent chelating effect and liquid repellency. This study provides a novel strategy for the development of high-quality marine antifouling and anticorrosion coatings.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.