Efficient recovery of gadolinium from magnetic resonance imaging patient urine using a diglycolamide ligand-functionalized sorbent system

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY Environmental Chemistry Letters Pub Date : 2025-01-20 DOI:10.1007/s10311-024-01815-2
Sai Praneeth, Ahmed K. Sakr, Preetom K. Roy, Timothy M. Dittrich
{"title":"Efficient recovery of gadolinium from magnetic resonance imaging patient urine using a diglycolamide ligand-functionalized sorbent system","authors":"Sai Praneeth, Ahmed K. Sakr, Preetom K. Roy, Timothy M. Dittrich","doi":"10.1007/s10311-024-01815-2","DOIUrl":null,"url":null,"abstract":"<p>Gadolinium-based contrast agents are used in more than 30 million magnetic resonance imaging procedures worldwide each year. These gadolinium complexes are excreted in urine and then end up polluting wastewater, leading to gadolinium concentration increase in rivers, known as the ‘gadolinium anomaly.’ Here we studied gadolinium recovery from patient urine using ligand-associated organosilica media impregnated with <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetraoctyl-diglycolamide, a chelating agent traditionally used in separating lanthanides from actinides in nuclear waste applications. Gadolinium-containing urine was acidified with nitric acid and tested in batch and packed bed column experiments. Sorbent media and precipitate solids were analyzed using advanced characterization tools. Results show that more than 85% of the gadolinium was recovered with a 12.8 mg g⁻<sup>1</sup> sorption capacity. A two-cycle column study produced over 99% pure gadolinium through stripping, oxalic acid precipitation, and calcination. A binding mechanism with a 1:3 chelation and matching kinetics for a pseudo-second-order rate model can help design scaled-up systems.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"32 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01815-2","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gadolinium-based contrast agents are used in more than 30 million magnetic resonance imaging procedures worldwide each year. These gadolinium complexes are excreted in urine and then end up polluting wastewater, leading to gadolinium concentration increase in rivers, known as the ‘gadolinium anomaly.’ Here we studied gadolinium recovery from patient urine using ligand-associated organosilica media impregnated with N,N,N′,N′-tetraoctyl-diglycolamide, a chelating agent traditionally used in separating lanthanides from actinides in nuclear waste applications. Gadolinium-containing urine was acidified with nitric acid and tested in batch and packed bed column experiments. Sorbent media and precipitate solids were analyzed using advanced characterization tools. Results show that more than 85% of the gadolinium was recovered with a 12.8 mg g⁻1 sorption capacity. A two-cycle column study produced over 99% pure gadolinium through stripping, oxalic acid precipitation, and calcination. A binding mechanism with a 1:3 chelation and matching kinetics for a pseudo-second-order rate model can help design scaled-up systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用二甘醇酰胺配体功能化吸附剂系统高效回收磁共振成像患者尿液中的钆
全球每年有超过3000万例磁共振成像手术使用钆造影剂。这些钆复合物随尿液排出,最终污染废水,导致河流中钆浓度增加,被称为“钆异常”。“在这里,我们研究了从患者尿液中回收钆的方法,使用配体相关的有机二氧化硅介质浸透N,N,N ',N ' -四辛基二甘醇酰胺,这是一种螯合剂,传统上用于在核废料应用中分离镧系元素和锕系元素。用硝酸酸化含钆尿液,进行了批量和填充床柱实验。使用先进的表征工具对吸附介质和沉淀固体进行了分析。结果表明钆的回收率达85%以上,吸附量为12.8 mg g - 1。通过汽提、草酸沉淀和煅烧,两循环柱研究产生了纯度超过99%的钆。一个具有1:3螯合和拟二阶速率模型匹配动力学的结合机制可以帮助设计放大的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
期刊最新文献
Indirect contamination of cockroaches by anticoagulant rodenticides Influence of prenatal exposure to per- and polyfluoroalkyl substances under gestational diabetes mellitus on birth and child growth Techniques for pollutant removal, nutrient recovery, and energy production from landfill leachates: a review Efficient recovery of gadolinium from magnetic resonance imaging patient urine using a diglycolamide ligand-functionalized sorbent system Bacterial cellulose and composites for the treatment of water pollution: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1