In situ electrochemical production of solid peroxide from urine

IF 42.8 1区 化学 Q1 CHEMISTRY, PHYSICAL Nature Catalysis Pub Date : 2025-01-20 DOI:10.1038/s41929-024-01277-3
Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng
{"title":"In situ electrochemical production of solid peroxide from urine","authors":"Xinjian Shi, Yue Jiang, Bailin Zeng, Zhuoyue Sun, Maojin Yun, Peng Lv, Yu Jia, Xiaolin Zheng","doi":"10.1038/s41929-024-01277-3","DOIUrl":null,"url":null,"abstract":"<p>The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value.</p><figure></figure>","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"57 1","pages":""},"PeriodicalIF":42.8000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41929-024-01277-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The selective extraction of urea from urine under mild conditions is essential for urban wastewater treatment. Here we devise an in situ electrochemical technique that converts urea, a nitrogen-rich waste, into percarbamide, a crystalline peroxide derivative of urea. This process simultaneously facilitates urine treatment and transforms waste into a valuable product. Using modified graphitic carbon-based catalysts, which are engineered with optimized active sites and structures, the system solidifies hydrogen peroxide and accelerates urea conversion. Precise control of temperature and urea concentration further enhances catalytic performance. The optimized process achieves near 100% purity in percarbamide precipitation from both human and mammalian urine. The collected percarbamide demonstrates remarkable potential for applications in various domains. This approach establishes a closed-loop system for production, utilization and recovery, offering a scalable solution for large-scale urine treatment with important economic and environmental value.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用尿液原位电化学生产固体过氧化物
在温和条件下从尿液中选择性提取尿素是城市污水处理的必要条件。在这里,我们设计了一种原位电化学技术,将尿素,一种富含氮的废物,转化为过尿素,尿素的结晶过氧化物衍生物。这一过程同时促进了尿液的处理,并将废物转化为有价值的产品。该系统使用经过优化的活性位点和结构的改性石墨碳基催化剂,固化过氧化氢并加速尿素转化。温度和尿素浓度的精确控制进一步提高了催化性能。优化后的工艺在人类和哺乳动物尿液中都能达到近100%的过脲沉淀纯度。所收集的过氨基脲在各个领域显示出显著的应用潜力。该方法建立了一个生产、利用和回收的闭环系统,为大规模尿液处理提供了一个可扩展的解决方案,具有重要的经济和环境价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Catalysis
Nature Catalysis Chemical Engineering-Bioengineering
CiteScore
52.10
自引率
1.10%
发文量
140
期刊介绍: Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry. Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.
期刊最新文献
Molecular basis of activity changes in acid catalysis within nanoconfined water Clarifying cation control Reaching out Plasma-driven decentralized production of essential chemicals Role of the human-in-the-loop in emerging self-driving laboratories for heterogeneous catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1