Min Shi, Yan Luo, Yu Tian, Lucy Q. Shen, Nazlee Zebardast, Mohammad Eslami, Saber Kazeminasab, Michael V. Boland, David S. Friedman, Louis R. Pasquale, Mengyu Wang
{"title":"Equitable artificial intelligence for glaucoma screening with fair identity normalization","authors":"Min Shi, Yan Luo, Yu Tian, Lucy Q. Shen, Nazlee Zebardast, Mohammad Eslami, Saber Kazeminasab, Michael V. Boland, David S. Friedman, Louis R. Pasquale, Mengyu Wang","doi":"10.1038/s41746-025-01432-5","DOIUrl":null,"url":null,"abstract":"<p>Glaucoma is the leading cause of irreversible blindness globally. Research indicates a disproportionate impact of glaucoma on racial and ethnic minorities. Existing deep learning models for glaucoma detection might not achieve equitable performance across diverse identity groups. We developed fair identify normalization (FIN) module to equalize the feature importance across different identity groups to improve model performance equity. The optical coherence tomography (OCT) measurements were used to categorize patients into glaucoma and non-glaucoma. The equity-scaled area under the receiver operating characteristic curve (ES-AUC) was adopted to quantify model performance equity. With FIN for racial groups, the overall AUC and ES-AUC increased from 0.82 to 0.85 and 0.77 to 0.81, respectively, with the AUC for Blacks increasing from 0.77 to 0.82. With FIN for ethnic groups, the overall AUC and ES-AUC increased from 0.82 to 0.84 and 0.77 to 0.80, respectively, with the AUC for Hispanics increasing from 0.75 to 0.79.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"28 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01432-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Glaucoma is the leading cause of irreversible blindness globally. Research indicates a disproportionate impact of glaucoma on racial and ethnic minorities. Existing deep learning models for glaucoma detection might not achieve equitable performance across diverse identity groups. We developed fair identify normalization (FIN) module to equalize the feature importance across different identity groups to improve model performance equity. The optical coherence tomography (OCT) measurements were used to categorize patients into glaucoma and non-glaucoma. The equity-scaled area under the receiver operating characteristic curve (ES-AUC) was adopted to quantify model performance equity. With FIN for racial groups, the overall AUC and ES-AUC increased from 0.82 to 0.85 and 0.77 to 0.81, respectively, with the AUC for Blacks increasing from 0.77 to 0.82. With FIN for ethnic groups, the overall AUC and ES-AUC increased from 0.82 to 0.84 and 0.77 to 0.80, respectively, with the AUC for Hispanics increasing from 0.75 to 0.79.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.