Deep-sea food-web structure at South Sandwich Islands (Southern Ocean): net primary production as a main driver for interannual changes

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION Ecography Pub Date : 2025-01-21 DOI:10.1111/ecog.07263
José P. Queirós, Philip R. Hollyman, Paco Bustamante, Diana Vaz, Mark Belchier, José C. Xavier
{"title":"Deep-sea food-web structure at South Sandwich Islands (Southern Ocean): net primary production as a main driver for interannual changes","authors":"José P. Queirós, Philip R. Hollyman, Paco Bustamante, Diana Vaz, Mark Belchier, José C. Xavier","doi":"10.1111/ecog.07263","DOIUrl":null,"url":null,"abstract":"Food-webs are a major component of ecosystems and determinant for their functioning and structure. The food chain length (FCL) is a key feature of food-webs and it is crucial for the resistance of the community to external stressors. The Southern Ocean (SO) food-web is known for being short and dominated by an Antarctic krill <i>Euphausia superba</i> surplus, though recent studies proved the existence of different pathways. However, previous studies focused on the pelagic realm, with the deep-sea and benthopelagic coupling remaining poorly understood. Using stable isotopes of δ<sup>13</sup>C and δ<sup>15</sup>N in muscle from individuals collected during toothfish fishing seasons 2020, 2021 and 2022, we 1) studied the bathyal food-web structure at South Sandwich Islands; 2) evaluated the interannual variability of FCL; and 3) tested which FCL hypothesis better explains the variability at the SO deep-sea. Our results show that this food-web is composed of five trophic levels with both Patagonian <i>Dissostichus eleginoides</i> and Antarctic <i>Dissostichus mawsoni</i> toothfish as top predators. The 4th and 5th trophic levels are mostly composed of fish, while in the 3rd trophic level we mainly found cephalopods and crustaceans. The benthopelagic coupling occurs at different trophic levels, though mostly between the 3rd and 4th trophic level. The FCL varied between years, being in 2022 0.30 trophic levels shorter than in 2020. Our results suggest that food-webs including a benthic component are longer than pelagic and coastal SO food-webs. The FCL is positively related with net primary productivity, supporting that the productivity hypothesis explains the variability in FCL in SO bathyal food-webs in slope and seamount areas. With climate change, the productivity in the SO is expected to increase which will increase the length of the food-web. This change will affect the structure of the ecosystem, increasing assimilation losses, exposure to biomagnifying contaminants and changing nutrient cycles.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07263","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Food-webs are a major component of ecosystems and determinant for their functioning and structure. The food chain length (FCL) is a key feature of food-webs and it is crucial for the resistance of the community to external stressors. The Southern Ocean (SO) food-web is known for being short and dominated by an Antarctic krill Euphausia superba surplus, though recent studies proved the existence of different pathways. However, previous studies focused on the pelagic realm, with the deep-sea and benthopelagic coupling remaining poorly understood. Using stable isotopes of δ13C and δ15N in muscle from individuals collected during toothfish fishing seasons 2020, 2021 and 2022, we 1) studied the bathyal food-web structure at South Sandwich Islands; 2) evaluated the interannual variability of FCL; and 3) tested which FCL hypothesis better explains the variability at the SO deep-sea. Our results show that this food-web is composed of five trophic levels with both Patagonian Dissostichus eleginoides and Antarctic Dissostichus mawsoni toothfish as top predators. The 4th and 5th trophic levels are mostly composed of fish, while in the 3rd trophic level we mainly found cephalopods and crustaceans. The benthopelagic coupling occurs at different trophic levels, though mostly between the 3rd and 4th trophic level. The FCL varied between years, being in 2022 0.30 trophic levels shorter than in 2020. Our results suggest that food-webs including a benthic component are longer than pelagic and coastal SO food-webs. The FCL is positively related with net primary productivity, supporting that the productivity hypothesis explains the variability in FCL in SO bathyal food-webs in slope and seamount areas. With climate change, the productivity in the SO is expected to increase which will increase the length of the food-web. This change will affect the structure of the ecosystem, increasing assimilation losses, exposure to biomagnifying contaminants and changing nutrient cycles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
南桑威奇群岛(南大洋)的深海食物网结构:净初级产量作为年际变化的主要驱动力
食物网是生态系统的一个主要组成部分,是生态系统功能和结构的决定因素。食物链长度(FCL)是食物网的一个重要特征,它对群落抵御外界压力至关重要。众所周知,南大洋(SO)的食物网很短,由南极磷虾(Euphausia superba)过剩主导,尽管最近的研究证明了不同途径的存在。然而,以往的研究主要集中在远洋领域,对深海和底栖的耦合仍然知之甚少。利用2020年、2021年和2022年齿鱼捕捞季节采集的个体肌肉中δ13C和δ15N的稳定同位素,研究了南桑威齐群岛的深海食物网结构;2)评估了FCL的年际变化;3)检验哪种FCL假说能更好地解释SO深海的变化。研究结果表明,该食物网由5个营养级组成,其中巴塔哥尼亚的eleginoides和南极的mawsoni Dissostichus齿鱼都是顶级捕食者。第4和第5营养层以鱼类为主,第3营养层以头足类和甲壳类为主。底栖耦合发生在不同的营养水平,但主要发生在第3和第4营养水平之间。FCL在不同年份有所不同,2022年比2020年短0.30个营养级。我们的研究结果表明,包括底栖生物成分的食物网比远洋和沿海SO食物网更长。FCL与净初级生产力呈正相关,支持生产力假说解释斜坡和海底山区深海食物网FCL的变化。随着气候变化,SO的生产力预计会增加,这将增加食物网的长度。这种变化将影响生态系统的结构,增加同化损失,暴露于生物放大污染物和改变营养循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
期刊最新文献
Drivers of amphibian species richness in European ponds Testing the abundant centre hypothesis in a seabird: higher energy expenditure at the wintering range centre does not reduce reproductive success Deep-sea food-web structure at South Sandwich Islands (Southern Ocean): net primary production as a main driver for interannual changes Resource redistribution mediated by hydrological connectivity modulates vegetation response to aridification in drylands Integrating food webs in species distribution models can improve ecological niche estimation and predictions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1