Sanjay Kapoor, Aleksander Rodek, Michał Mikołajczyk, Jerzy Szuniewicz, Filip Sośnicki, Tomasz Kazimierczuk, Piotr Kossacki, Michał Karpiński
{"title":"Electro-optic frequency shift of single photons from a quantum dot","authors":"Sanjay Kapoor, Aleksander Rodek, Michał Mikołajczyk, Jerzy Szuniewicz, Filip Sośnicki, Tomasz Kazimierczuk, Piotr Kossacki, Michał Karpiński","doi":"10.1515/nanoph-2024-0550","DOIUrl":null,"url":null,"abstract":"Quantum dots (QDs) are a promising source of single photons mainly due to their on-demand operation. However, their emission wavelength depends on their size and immediate surroundings in the solid-state environment. By applying a serrodyne electro-optic phase modulation, we achieve a spectral shift up to 0.01 nm (3.5 GHz) while preserving the purity and indistinguishability of the photons. This method provides an efficient and scalable approach for tuning the emission wavelength of QDs without relying on nonlinear frequency mixing or probabilistic processes. Our results show that the electro-optic phase modulation enables stable and tunable spectral shifts, making it suitable for applications such as quantum communication, quantum key distribution, and primarily integrating remote quantum dot sources into large-scale quantum networks.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"15 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0550","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum dots (QDs) are a promising source of single photons mainly due to their on-demand operation. However, their emission wavelength depends on their size and immediate surroundings in the solid-state environment. By applying a serrodyne electro-optic phase modulation, we achieve a spectral shift up to 0.01 nm (3.5 GHz) while preserving the purity and indistinguishability of the photons. This method provides an efficient and scalable approach for tuning the emission wavelength of QDs without relying on nonlinear frequency mixing or probabilistic processes. Our results show that the electro-optic phase modulation enables stable and tunable spectral shifts, making it suitable for applications such as quantum communication, quantum key distribution, and primarily integrating remote quantum dot sources into large-scale quantum networks.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.